

Civil and Surveying Software

Version 9 Course Notes

CIVIL AND SURVEYING SOFTWARE

THE 12D PERSPECTIVE

STORMWATER DESIGN - Part 2

12d Solutions Pty Limited ACN 056 019 713 Phone: +61 (2) 9970 7117 Fax: +61 (2) 9970 7118Email training@12d.com

12d Stormwater Course - Part 2 Notes

These course notes assume that the trainee has the basic 12d Model skills usually obtained from the "**12d Model Training Manual**"

These notes are intended to cover basic Stormwater Design. For more information regarding training courses contact 12d Solutions Training Manager.

These notes were prepared by Robert Graham

Revised October 2010

Copyright © 12d Solutions Pty Limited 2010

These notes may be copied and distributed freely.

Disclaimer

12d Model is supplied without any express or implied warranties whatsoever.

No warranty of fitness for a particular purpose is offered.

No liabilities in respect of engineering details and quantities produced by 12d Model are accepted.

Every effort has been taken to ensure that the advice given in these notes and the program 12d Model is correct, however, no warranty is expressed or implied by 12d Solutions.

Copyright © 12d Solutions Pty Limited 2010

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

1.0	Stormwater Design Part 2- Introduction	2
2.0	Starting with a Basic Drainage Network	3
3.0	Setup Filesnd Their Locations	3
4.0 4.1 4.2	Bypass Flow Drawing Bypass Flow Strings Set Pit Details - Calculate the Bypass Flow Data	 7 8 14
5.0 5.1 5.2 5.3	The drainage.4d file Pit Type definitions Pipe Type Definitions Pit Inlet Capacities	19 19 24 26
6.0	12d Storm Analysis Bypass and Flooded Width Calculations	29
7.0	Drainage Utility String Editor	32
8.0	Open Channel Flow	35
9.0	Horizontal Change in Road Alignment (Adjust Pit Locations)	39
10.0	Major Flood Events	42
11.0	Excavation Quantities	45
12.0	Network Quantities Report	48
13.0	Exporting to Drainage Design Software Packages	53
14.0 14.1 14.2 14.3	Drainage Data Input and Output to Spreadsheets 12d to spreadsheet transfers "12d drainage spreadsheet" Format 12d Drainage Variable Names	55 55 61 63
15.0	Detailed Drainage Plan Drawing - Creating MH Symbols	64
16.0 16.1 16.2	User Defined Attributes Drainage Pit attributes Drainage Pipe attributes	67 68 71
17.0	Detailed Drainage Plan Drawing	73
18.0 18.1 18.2 18.3 18.4	Drainage Long Section Plotting - Hatching Under Roads Creating the Obvert strings Create and Null the Obvert tin Create a Roads Only Tin Use the Hatching Feature in Drainage Longsections	77 77 79 80 83
19.0	Flooded Width Analysis and HEC RAS	87

COURSE NOTES STORMWATER DESIGN - Part 2

1.0 Stormwater Design Part 2- Introduction

The **Stormwater Design Course Part 1** and this manual, the **Stormwater Design Part**, describe the functions and processes of the 12d drainage module. In these documents, the generic term **pit** refers manholes inlets, catch basin and manholes.

The Stormwater Design Course - Part 1 Notes contain:

- s create a super tin for pipe cover and pit cover levels,
- s set drainage defaults and layout a drainage network from CAD and in 12d,
- s use the 12d drainage network editor to assign names to the pit/pipes, avoid service clashes, grade pipes, align obverts, minimise depth and many other design tools,
- s designate catchment areas and produce catchment plans,
- s run the 12d storm rational hydrology and hydraulics engine,
- s transfer data to and from electronic spreadsheets to enable the user to easily review the data and add user defined data to the 12d pipe network. This data may include such data as pipe bedding types and trench width,
- s create a drainage template containing customised default design parameters,
- s create pit setout schedules to export to spreadsheets or word processors for final formatting,
- s produce long section drainage profiles including HGL data, flows, invert levels and service crossings,
- s create plan drawings with pipe sizes, flows, pit symbols, linestyles for pipe sizes, design parameters for pit and pipes and user defined data,
- s locate pits/manholes at exact chainage and offset locations.

This manual, the **Stormwater Design Course - Part 2**, is intended to describe the additional features of 12d model drainage and discuss the customisation of the package. This will include

- s customising the drainage.4d file,
- s 12d storm analysis with inlet capacity calculations and bypass flow,
- s flooded width analysis and flooding at SAG pits,
- s drainage trench excavation volume calculations,
- s pipe and pit quantity calculations/reports,
- s open channel calculations,
- s adjusting pit locations for changes in horiz road geometry
- s analysing the major flood events,
- s design or evaluate the drainage system using by creating input files for the xpswmm/ xprat-hgl, Windes, Drains and PCdrain drainage design packages,
- s read the output from the drainage design packages and update the drainage network plus storing the hydraulic data, such as hgl (hydraulic grade line) levels, peak pipe flows and

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

pipe capacities,

- s creating drainage symbols with grates and upstream side inlets,
- s detailed drainage plan labelling and long sections with hatching under roads.

2.0 Starting with a Basic Drainage Network

In this document, the generic term **pit** refers to manholes, inlets, catch basin and manholes. When the term **manhole** is used on the 12d menu system it refers to any type of pit. Pit types, dimensions and inlet capacities of the pits are set in the drainage.4d file.

These course notes assume that you have completed the Stormwater Design Course and that you have experience creating 12d model drainage networks with catchments areas. You may continue this project or begin with a completed drainage design found in the directory

\12d\9.00\Courses\Drainage_Analysis

The project name is Local Road Complete.

3.0 Setup Filesnd Their Locations

The drainage module consists of the optional 12d Drainage Analysis, utilities, startup configuration files for RAT2000, XP SWMM and the 12d drainage configuration file (drainage.4d).

All setup files have been configured for the training version. However, when you start working on real projects you may want customise the drainage module. **More - Customising the drainage module**

The **drainage.4d** file contains pipe types (RCP, Class 2 etc.) and example pit inlet capacites for inlet pits. Detailed pit type descriptions and internal pit dimensions can be included in this file to be inserted into your pit schedules. For PCdrain and Drains users there are routines to read your gully pit/database files and create the drainage.4d file **More**.

REVIEW THIS DATA CAREFULLY! The **drainage.4d** file may be customised for any additional inlet capacity data you may have.

To edit the drainage.4d file, from the main menu select

Design->Drainage-Sewer->More->Edit drainage.4d

🔲 Edit Draha	ge.4d 📃 🗆 🔀
Drainage.4d	drainage.4d 🔂 🗲
Find	Finish
(Fina)	Finish

Select the **Find** button to search the 12d path for the current **drainage.4d** file. If the file is found in the **set-ups** folder, it should be copied to the user folder or your current working folder before editting it (see below).

Select the **More info** button (the folder) and then **Open** to edit the file.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Copying the drainage.4d files

If the drainage.4d file is found in the 12d setups folder or if other drainage.4d files are to be used they can be copied from setups folder.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Select the file to	open	? ×
Look in:	🕞 Set_ups 💽 🕑 💈 🕄	
My Recent Documents My Documents My Documents Desktop Desktop Favorites My Computer	Image: 4d drainage: 4d drainage: V8 Qld BCC pcdrain. 4d drainage: V8 Qld BCC.44 drainage: V7 Qld.4d drainage: V7 Drains Victor drainage: V7 Drains NSW Grainage: V7 Drains NSW drainage: V7 Drains NSW Grainage: V7 Drains NSW Cut Copy: 7 Create: Shortcut Delete Bename File: name: dr*.4d Troperties roperties Files of type:	pen

- 5. type **dr*.4d** and press **Enter** to get a list of the drainage.4d files.
- 6. RB the desired file
- 7. Select **Copy** to place the file on the clipboard.
- 8. select the **Up level** icon to move back up a level
- 9. Select the User folder
- 10.RB in the white space and then selectPaste.
- 11. The file can now be renamed **drainage.4d** if it had another name.

Select the file to open	Select the file to o	pen
Look in: 🗀 8.00	Look in:	🔁 User
MuBacant Set up:	My Recent Documents My Documents	View Arrange Icons By Refresh Paste 10 Paste Shaytcut Undo Delete Ctrl+Z

COURSE NOTES STORMWATER DESIGN - Part 2

You must restart 12d for these changes to become active. Select Project->Restart!

At startup, if there are significant errors in the file, refer to the output window where 12d will print the line number where it give up. When looking in the long list of files, the drainage.4d file is loaded after the shp files.

See "The drainage.4d file" on page 19.

REVIEW THIS DATA CAREFULLY! A detailed description of the pit inlet capacity tables in this file is given in "Pit Inlet Capacities" on page 26. The **drainage.4d** file may be customised for any additional inlet capacity data you may have.

COURSE NOTES **STORMWATER DESIGN - Part 2** 4.0 Bypass Flow

Bypass flow strings are used to trigger the bypass calculations in the network editor and are used as a centre line for flooded width calculations.

The 12d storm analysis, and many of the design programs 12d exports to, allow for bypass flow. Bypass flow involves the calculation of pit inlet capacity for on-grade or sag pits. These capacities are based on the pit type and may use either ponding depths (sag pits) or on the road grade and/or crossfall upstream of the inlet.

Key Points

Draw an bypass flow string in the direction of flow so that it passes within 1 pit diameter of an inlet. At sag locations the string should show the direction of flow during bypass conditions. When bypass flow strings join they must join within 1 pit diameter of an inlet (pits with inlet config set to Manhole are not considered inlets). If flooded with calculations are to calculated the string should located in the flow channel.

Enter the model name in the Bypass flow model field on the Global->Utility Models tab.

Note: if there is no bypass flow string within 1 pit diameter then 100% of the approach flow will enter into the pit.

- 2. Many bypass strings may join at an inlet but only one bypass string should leave each inlet.
- 3. Set the pit type. (**Pit Type** on the **Pit** tab). With a bypass string within 1 pit diameter of the pit centre, no water will enter the pit unless the pit type has inlet capacity data defined in the drainage.4d file.
- 4. Set the **Inlet config** on the **Pit->Main** tab (Manhole, On-grade or Sag pit). This selection will be disabled if cap_config parameter sets the inlet type in the drainage.4d file. Manholes have no inlet capacity and are not considered inlets, on-grade inlets capture the water as it passes the inlet while SAG inlets trap the water flowing in from all directions (until the pond depth overflows at the low point of the catchment string).
- 5. On grade pits may require road grade and/or crossfall data for inlet capacity. They may be entered manually or calculated using the road strings. A setout string link is required to measure road grade. If road crossfall measurement is needed then the centre string is also required. These strings are specified using the **Road design file** on the **Global->Utility Models** tab (see Stormwater Part 1 manual).
- 6. Sag inlets require a pond depth either manually entered or calculated by 12d. Pond depth calculations require a link to a catchment string to locate the overflow point and correct grate level (**Grate rl mode**).
- 7. Press the **Set Pit Details** button. Road grades, crossfalls, pond depths and bypass pits will now be found on the **Pit->Bypass** tab of the **Network Editor**. Measurement markers are created in the **construction drainage data** model.
- 8. Bypass pits may be cleared using Clear Bypass Links on the Globals->Utility Models tab
- 9. Storm Analysis must have Consider Bypass Flows selected on the Main tab.
- 10. Calculate overland flood extents is optional on the Flood Extents tab of Storm Analysis.

COURSE NOTES STORMWATER DESIGN - Part 2

4.1 Drawing Bypass Flow Strings

The bypass flow string must be within 1. pit diameter of the drainage pit in be considered on the bypass flow path. If the bypass flow string is to be used for flooded width calculations in the future, the string must also be drawn in the main flow area of the cross section. At sag locations the bypass flow strings indicate the direction the water flows when it overtops the overflow point. This string usually goes uphill to this overflow point.

For a project with roads it is easiest to copy a road string (invert strings are usually the best) into the flow model and then check the string to see if it flows down hill. You may be required reverse the direction of some strings, split some strings at major crests, join some strings that do not meet at inlets and finally add some flow lines where flow crosses the road.

Copying the Invert strings into the bypass model

First we will create a new view for just the road strings.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

- Place your point over the + button and press
 Shift+r to display all of the models starting with R.
- 2. Drag your pointer across all of the road models to select them
- 3. Lb the **Select** button to add them to the view.

From the main menu select

Utilities->A-G->Change

Change String Info	1. Select the filter button
Data to convert	 Select the View button and then select the Roads view Select the String Info tab.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Change String Info	_	1.	Type *inv to select the rinv and linv strings.
View Model String Info Point ID	lis Polygons Ext ▲ ▶	2.	Select Filter Select to select the *inv strings from the Roads view.
Type Name Colour Pt-line Style	any string	3. 4.	Note that 17 strings have been selected from the roads models. Enter a New name so that the string will not be confused with the road invert strings in the
Weight Filter Select 2		5.	Either type FLOW LINE or select the line style button, then select the group Drainage 12d and finally FLOW LINE line
New name New colour New style		6.	style. type bypass flow,1 for the new
New pt-line type New weight	leave as is		model. The ,1 will add the model to view 1 for you.
Target	bypass flow 5	7.	select Change to copy the strings to the new model with the new line style.
Change 6 Finish	Help		

Splitting the Strings at Major Crests

If the roads contain a major crest that defines a separate catchment then the flow lines will need to be split so that one segment can be reversed.

If you have labelled the crests and sag points then you can use these labels to quickly identify the crests.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

- 1. Drag out the CAD string toolbar and select the String split icon.
- 2. Instructions will be given in the 12d message area (bottom left corner of the screen). Pick and accept the string to be split.
- 3. Pick and accept the split point or if you have them the crest marker. The string will now be split.

repeat steps 2 and 3 for all strings to be split. Press ESC when finished.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Reversing the Strings if they flow in the wrong direction

- 1. Drag out the CAD string toolbar and select the String Reverse icon.
- 2. Instructions will be given in the 12d message area (bottom left corner of the screen). Pick and accept the string to reverse.

continue selecting strings to be reversed. Press ESC when finished.

Joining Flow Lines Together

If the flow lines join each other within 1 pit diameter of an inlet (not a manhole) then they do not need to be joined (but they can if desired). If there is no inlet at the join then you will have to join the strings together.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

1. Drag out the **CAD string**

toolbar and select the String Join icon.

2. Instructions will be given in the 12d message area (bottom left corner of the screen). Pick and accept the upstream string then pick and accept the downstream string. Since they are already drawn in the same direction you will not have to use a directional pick.

continue selecting strings to be joined. Press ESC when finished.

Adding additional flow lines where the flow cross the road

Use the **CAD toolbar** to create the bypass flow paths.

To use the **CAD toolbar** go to the **CAD data bar** and enter a string name and model name. Select the line style (optional).

DRAG the Create line button and release at the Create Line String button.
When finished drawing the string press ESC.
Create Line String

Starting at the upstream end. LB select an insertion point and MB or press return to accept the selection. Continue this until you reach the end of the flow path. The string will not be shown in the new linestyle until the screen is redrawn. Press **ESC** to finish drawing the string. MB on the plan view title area to redraw the screen. The correct linestyle will now appear.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

If you reach a sag pit location you may terminate the string or continue defining the bypass flow path for a surcharging event out of the sag location.

4.2 Set Pit Details - Calculate the Bypass Flow Data

Once the first Key points of bypass flow (listed above) are complete, you are ready to calculate the bypass flow data. Select **Set Pit Details** and then select a pit on a bypass flow string. The bypass data is found on the **Pit->Bypass** and **Pit Main** tabs.

Drainage Network Editor				
Catchment Pit Pipe DEFAULTS GLOBAL Results				
Current pit				
Pit name 11	Pit type SAL2D			
Main Setout Bypass Bypass Shape Basin	Notes			
Cover RL mode 🔽 🔽	Cover RL 25.667226			
Grate RL mode 🛛 🗸	Grate RL 25.509726			
Pit diameter 0.93	Sump offset			
Inlet data				
Ku method 🔽 🔽	Inlet config Sag Pit			
Ku config 🔽 🔽 🗸	Qdg (minor)			
		V Land		

12d supports Manhole, on-grade and SAG configurations. The **inlet configuration** is set on the **Pit-**>**Main**. This settings can be locked to the **Pit type** in the drainage.4d file using the cap_config command (discussed later but shown above). Pits with **Inlet config** set to **Manholes** will not receive bypass flow and cannot have catchments assigned to them. On-grade pits are pit where the water will flow passed the pit if not captured and Sag pits are located at sag locations where the water will pond around the pit if there is not enough inlet capacity.

The remaining bypass data is found on the Pit->Bypass tab.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Drainage Network Edit	or			
Catchment Pit P	ipe DEFAULTS	GLOBAL Results		
Current pit Pit name 1		Pit type AL2	D	
Main Setout B	/pass Bypass Shape	Basin Notes		
Bypass flow / Inlet Bypass pit	capacity factors		•	
Manning's n				
Section				
Distance				
Lost grade				
US invert				
On-grade pit				
Manual	📄 Road grade (%)	0.4283	oke (minor)	
Manual	🔲 Road xfall (%)	3 Pho	oke (major)	
Sag pit				

The downstream pit will now show in the **Bypass pit** field. If the bypass string does not go to another inlet (the network outlet is never an inlet) then the **Bypass pit** will be marked as **LOST**.

If **Pit on grade** is selected and a setout string was found (see **Pit->Setout** tab), the **Road grade** will appear in grey. You may override this value by selecting the **Manual** tick box beside the value and entering your own value. If a road centre string was selected, the **Road xfall** field will also have a value.

If **Sag pit** was selected and a catchment string was selected, the **Max pond depth** will be displayed. The catchment strings from all 3 sets are draped onto the finish surface tin and the low point located. The **Max pond depth** is calculated as

Max pond depth = catchment string low point - Grate RL.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Negative Pond Depths

Negative pond depths are usually caused by one of two errors in input. The first may be that the grate level is too high. Often this happens when the Grate RL mode on the **Pit->Main** tab has not be set correctly or if **Sz + setout string** option is used the **Sz** value on the **Pit->Setout** tab has been entered correctly.

The second common error is that the catchment string has not been drawn around the crest of the catchment. The lowest section of the catchment string must be drawn carefully because it is the lowest point on the string that determines the overflow elevation. If in doubt, profile the catchment string with the design tin shown in the section view. Double check were the low point is. The location of the low point is also shown as a green vertex (plus sign) in **construction drainage data** model.

Verification strings in the same model confirm the locations where the road grade and crossfall have been measured. To check these strings add the **construction drainage data** model to the plan view. The following image shows a close up of the verification strings at a pit.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

The green line indicates where road grade was measured and the magenta line indicates where the road cross fall was measured.

The default location of the road grade measurement is one pit diameter upstream of the setout point, along the setout string. The road crossfall is measure one pit diameter away from the setout point towards the road centreline. These are 3d super strings and therefore you may profile them in the section view. With the grades toggled on (check under **Toggle**) you can verify the slopes.

The location of the road grade and crossfall measurements can be changed in the **road design file**. The distance upstream to measure the road grade is controlled by the **Grade offset** column one the rows where the setout strings are defined. The road crossfall is controlled by the **Xfall offset** column on the rows where the road centre lines are defined. The distance the measurements are taken is controlled by the **Slope measurement distance**.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Important Notes

- 1. Pits with a bypass pit entered but no inlet capacity defined in the drainge.4d file will have a zero inlet capacity.
- 2. With Inlet config set to Manhole, the pit has no inlet capacity.
- 3. If no bypass flow string is supplied for a pit, the inlet capacity is set to 100%.
- 4. If you have a problem with the inlet capacity calculations, check the **Storm Analysis** hydrology report for details.

COURSE NOTES **STORMWATER DESIGN - Part 2** 5.0 The drainage.4d file

The drainage.4d file controls many of the settings for the pit and pipes types inside 12d. This section details the format of the drainage.4d file. Changes to this model take effect only after 12dmodel has been restarted. If there are any errors in the drainage.4d file they will be listed in the output window at startup (just after the shp file listing). The error in the drainage.4d file is generally located just above the line indicated in the output window.

All text to the right of the // is ignored by 12d (comments). There are pit and pipe type definitions. Because of historic reasons the pit types are defined using a **Manhole** command.

Many of the settings in the drainage network editor (DNE) can be controlled by the pit types and the pipe types defined in the drainage.4d file. The **special manhole attributes** defined below control these fields.

The original **drainage.4d** file is found in the "program files\12d\12dmodel\9.00\set_ups" directory. **Do NOT** change this file. Copy it into your user folder "\12d\9.00\User" and edit it there. Files in the user directory are used by preference and they are never over written by a 12d update.

5.1 Pit Type definitions

The order of the pit type definitions controls the order of the pit types in the DNE drop down list. The minimum requirement for a pit type definition is

Mnahole "name" {
}

The name must be unique and the braces {} cannot be () or [].

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Example:

The setout xy mode controls the following on the DNE.

attribute_integer "setout xy mode" 0 //[0,1,2] Pit=>Setout=>Setout xy mode

The 0,1,2 are the values to be used. The order of the numbers [0,1,2] is the same as the order in the DNE drop down list. The numbers are not always in sequential order.

0	Pit centre
1	Setout string
2	Manual

Drainage Network Editor	
Catchment Pit Pipe DEFAULTS GLOBAL Results	
Current pit Pit name 1 Pit type	AL2D
Main Setout Bypass Bypass Shape Basin Notes	l
Pit setout	
Setout xy mode	5143.546588
Setout distance 0 Pit Centre	7321.575974
Setout z mode Setout String	- 25.549726
Manual	
Pit road chainage	- Charles have

The following example of a channel ip point is given below. The setout modes are set, the cover and grate level modes are set and the ku (losses) are set. Finally, the inlet capacity is set to an on-grade pit with200% inlet capacity so that even in a major storm with a choke factor of 0.5 it will still have 100% inlet capacity.

```
Manhole "CHNL auto" {
 mhdesc "channel hip-vip"
 attribute_text "lplot description1" "OPEN CHANNEL"
 mhsize 0.0
 mhdiam 0.0
 attribute_integer "setout xy mode" 0 // centre of the channel
 attribute_integer "setout z mode" 6 // sump invert is the bottom of the chan-
nel
 attribute_integer "cover rl mode"
                                    4 // max obvert - top of the channel
 attribute_integer "grate rl mode" 4 // max obvert - top of the channel
 attribute_integer "ku method"
                                   0 // direct
 attribute real
                  "ku"
                                    0.0 // zero unless interested in bend
losses
```

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

```
cap_config G
```

```
cap_percent 200 // if a choke factor of 0.5 is applied then it will still
have 100% inlet capacity
}
```

Manhole Commands

```
11
_____
// Rules for manhole/pipe attributes in the drainage.4d file:
11
_____
// From V9, bothpit the Manhole and Pipe entries support attribute entries based on
manhole/pipe type:
11
// attribute_integer "attribute name1" <Integer value>
// attribute_real "attribute name2" <Real value>
// attribute_text "attribute name3" "Text value"
                 "attribute name3" "Text value"
11
// The following manhole & pipe attribute names are recognised as special by 12d, and
may be used to take
// control of the matching fields in the Drainage Network Editor for the applicable
manhole/pipe types:
11
11
   _____
// Special manhole attributes
                                    Valid values
                                                      DNE field
// _____
// attribute_integer "cover rl mode" [0,3,1,8,4,2] Pit=>Main=>Cover RL mode
// attribute_integer "grate rl mode"
                                    [7,0,3,1,8,4,2] Pit=>Main=>Grate RL mode
// attribute_real "sump offset"
                                                      Pit=>Main=>Sump offset
// attribute_integer "ku method"
                                    [0-3,101-110,201-223] Pit=>Main=>Ku method
// attribute_real
                 "ku"
                                                       Pit=>Main=>Ku
// attribute_real
                  "kw"
                                                       Pit=>Main=>Kw
// attribute_integer "setout xy mode" [0,1,2] Pit=>Setout=>Setout xy mode
// attribute_integer "setout z mode" [7,0,3,1,8,4,5,6,2]
                                           Pit=>Setout=>Setout z mode
// attribute_integer "road chainage mode" [0,1,2] Pit=>Setout=>Chainage mode
// attribute_real "setout adjustment"
                                                       Pit=>Setout=>Sxy
// attribute_real
                  "setout adjustment z"
                                                       Pit=>Setout=>Sz
                  "design freeboard" Pipe=>Design=>Freeboard limit at US pit
// attribute_real
// Any other manhole/pipe attribute name may be specified, apart from those documented
in:
// http://www.forums.12dmodel.com/downloads/Owen.Thornton/12d_Drainage_Attributes.pdf
// which are reserved for use by the 12d 'Drainage' and/or 'Drainage Analysis' modules.
11
then that attribute
        will be deleted on all manholes with types where the attribute is not set.
11
// NB2: If a non-special attribute name is set for some, but not all Pipe types, then
that attribute
         will be deleted on all pipes with types where the attribute is not set.
11
11
_____
```

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

==

```
// Manhole Format:
//Manhole "manhole type" {
11
   //All entries inside a Manhole entry are optional.
11
11
// attribute_integer "attribute name1" <Integer value>
// attribute_real "attribute name2" <Real value>
// attribute_text "attribute name3" "Text value"
11
// mhsize <x.x> [<x.x>] //Nominal Length [and optional Width] in <br/> <code>base units></code>
// mhdiam <x.x>
                       //controls drawn MH diam on Drainage string (omit mhdiam entry
to specify independent of manhole type)
11
// mhdesc "verbose description of the manhole type"
// mhnotes "extra remarks about this manhole type"
// mhgroup "manhole group to which the type belongs"
11
// //Capacity configurations (omit cap_config entry to specify independent of manhole
type):
11 11
      "cap_config G" = on-grade pit ... OR
// // "cap_config S" = sag pit
                                   ... OR
// // "cap_config M" = manhole (sealed pit)
11
   cap_config G
11
11
11
   //Inlet capacity data for G and S configs (generic):
11
// cap_multi
             <x.x>
// cap_fixed <x.x>
// cap_percent <x.x>
// cap_coeff <x.x>
// cap_power <x.x>
11
// //Inlet capacity data for G config (by road grade & xfall):
11
// cap_curve_grade "curve 1" {
    road_grade <x.x>
11
11
    road_xfall <x.x>
11
    cap_multi
                <x.x>
               <x.x>
11
    cap_fixed
11
    cap_percent <x.x>
//
    cap_coeff <x.x>
               <x.x>
//
    cap_power
    coord <Qa> <Qin>
11
11
    coord <Qa> <Qin>
11
    coord <Qa> <Qin>
// }
// cap_curve_grade "curve 2" {
11
   road_grade <x.x>
11
   road_xfall <x.x>
11
   cap_multi <x.x>
11
   cap_fixed <x.x>
```

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

```
11
     cap_percent <x.x>
11
     cap_coeff <x.x>
     cap_power <x.x>
11
    coord <Qa> <Qin>
11
11
     coord <Qa> <Qin>
     coord <Qa> <Qin>
11
// }
// cap_curve_grade "curve n" {
    road_grade <x.x>
11
11
    road_xfall <x.x>
11
    cap_multi <x.x>
11
    cap_fixed <x.x>
    cap_percent <x.x>
11
//
    cap_coeff <x.x>
11
    cap_power <x.x>
11
    coord <Qa> <Qin>
11
    coord <Qa> <Qin>
11
     coord <Qa> <Qin>
11
   }
11
11
   //Inlet capacity data for S config:
11
// cap_curve_sag "curve sag" {
              <x.x>
<x.x>
11
     cap_multi
11
     cap_fixed
//
     cap_percent <x.x>
11
    cap_coeff <x.x>
//
    cap_power <x.x>
    coord <Depth> <Qin>
11
11
    coord <Depth> <Qin>
11
     coord <Depth> <Qin>
// }
//}
//-
    _____
// Rules for Pit Inlet Capacity Data
//-----
11
//Qa = pit approach flow rate
//Qin = pit inflow rate
//Qb = bypass flow rate = Qa - Qin
11
//If pit is sealed (i.e. a manhole)
                                : Qin = 0
//If no bypass pit (i.e. 100% capture): Qin = Qa
11
//Else: Qa >= Qin = choke*cap_multi*( cap_fixed
                                 + cap_percent*0.01*Qa
11
//
                                 + cap_coeff*Qa^cap_power
//
                                 + cap_curve_? {
11
                                     cap_multi*( cap_fixed
//
                                              + cap_percent*0.01*Qa
//
                                               + cap_coeff*Qa^cap_power
//
                                               + [Qin via coord lookup] )
11
                                   }
11
                                )
11
                  where: 'cap_curve_?' is the applicable curve data
11
11
//Default values for unspecified entries:
// cap_multi = 1.0
```

COURSE NOTES STORMWATER DESIGN - Part 2

```
= 0.0
// cap_fixed
// cap_percent = 0.0
// cap_coeff = 0.0
// cap_power = 1.0
11
//Rules for 'cap_curve_grade' entries:
// *Only applicable to on-grade pits.
// *All cap_curve_grade entries must be uniquely named within a pit.
// *The 'road_grade' and 'road_xfall' entries are both optional, but their
     use must be consistent across all cap_curve_grade entries within a pit.
11
// *If both 'road_grade' and 'road_xfall' entries are omitted, only one
11
    cap_curve_grade entry is allowed within a pit.
  *The 'road_grade' and 'road_xfall' entries must be specified in %, and are
11
     interpreted as minimum threshold values.
11
  *The cap_curve_grade 'coord' entries (if used) must be in order of
11
11
     increasing Qa.
11
//Rules for 'cap_curve_sag' entries:
   *Only applicable to sag pits.
11
11
   *Only one cap_curve_sag entry is allowed within a pit, and it must have
11
     a valid name.
11
   *The cap_curve_sag 'coord' entries (if used) must be in order of
11
     increasing Depth.
// *It is recommended that all sag pits have 'coord' entries, because even
     if there is no bypass pit (100% capture), the 'coord' entries are used
11
11
      to reverse-calculate the flooded depth at the sag inlet, based on Qin.
11
//NB1: Flow rates must be specified in "cubic <base units> per second".
//NB2: Depths must be specified in <base units>.
//NB3: For choke factors: 0.0 means blocked, 1.0 means unblocked.
11
_____
```

5.2 Pipe Type Definitions

The order of the pipe type definitions controls the order of the pipe types in the DNE drop down list. The minimum requirement for a pipe type definition is

```
Pipe "name" {
}
```

The name must be unique and the braces { } cannot be () or [].

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Example:

The roughness type and value types can be set in the DNE.

roughness_n 0.040

Drainage Network Editor	
Catchment Pit Pipe DEFAULTS GLOBAL R	lesults
Pipe downstream of current pit	
Pipe ID 19 to 18	Pipe type CHNL GRASS PROF
Main Design Channels Notes	
Invert levels	
US Invert 24.122893	DS Invert 23.580343
Dimensions	
Diam/Height 0.5	ype 🔽 🗸 🗸
Width 1	Num of 1
Top width 4	Disch Coef
	Length 108.51
Section location	
Other properties	
Roughness type Manning	Qdp (minor)
Roughness 0.04	Qdp (major)
US defl. 0°	DS defl -11°48'20"

Example:

```
Pipe "CHNL GRASS PROPOSED" { //Open Channel created below the tin. cover set
in cover file to 0.0
  roughness_n 0.040
  attribute_integer "design size mode" 3 // open channel mode
}
```

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Pipe Commands

```
// Pipe Format:
//Pipe "pipe type" {
11
// //All entries inside a Pipe entry are optional.
11
// attribute_integer "pipe attribute name1" <Integer value>
// attribute_real "pipe attribute name2" <Real value>
// attribute_text "pipe attribute name3" "Text value"
11
  //Pipe roughness ... n or k (omit roughness entry to specify independent of
11
pipe type):
11
// roughness_n <Manning n roughness value>
// roughness_k <Colebrook k roughness value> //in millimetres
11
  _____
// Special pipe attributes
                         Valid values DNE field
// _____
// attribute_real "min height" [> 0.0]
                                      Pipe=>Design=>Min pipe
height
// attribute_integer "design size mode" [0,1,2,3] Pipe=>Design=>Design
mode
// attribute_real "design percent depth" [> 0.0]
                                     Pipe=>Design=>Flow-depth
at pipe entrance
// -----
11
//}
```

5.3 Pit Inlet Capacities

The pit inlet capacity tables contained within the **drainage.4d** file are used by the drainage design packages in different ways but with a common philosophy.

5.3.1 On grade pits

The grade and crossfall values for the tables are threshold values, i.e. the next set of capacity factors will not be used until the crossfall and grade are equal to or exceed the values for the curves. The curves are not interpolated!

12d Storm Analysis

Some sample Pit definitions follow to demonstrate how the pit inlet capacities are calculated.

```
Manhole "SEP 25" {
    mhsize 1.200 0.900
    mhdesc "SEP with 25 l/s"
```

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

```
mhnotes ""
 mhgroup "SA"
 cap_multi 1.0
 cap_fixed 0.025
}
Manhole "SEP 50 percent" {
 mhsize 1.200 0.900
 mhdesc "SEP with 50%"
 mhnotes ""
 mhgroup "SA"
 cap multi 1.0
 cap percent 50.
}
Manhole "SEP Grade x 10" {
 mhsize 1.200 0.900
 mhdesc "SEP with 25 l/s"
 mhnotes ""
 mhgroup "SA"
 cap curve grade "curve 1" {
   road grade 1
   cap_multi 1.0
   cap fixed 0.010
  }
  cap curve grade "curve 2" {
   road_grade 2
   cap_multi 1.0
   cap fixed 0.020
  }
 cap_curve_grade "curve 3" {
   road_grade 3
   cap_multi 1.0
   cap fixed 0.030
  }
 cap_curve_sag "curve sag" {
   cap multi 1.0
   coord 0.0 0.000
   coord 0.1 0.010
  }
```

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

}

Drains Version 1 and ILSAX

The cap1, cap2, cap3 and cap4 values are used to describe the inlet capacity of the pit as described in their user manuals.

Drains Version +

The 12d inlet curve names are exported to Drains as the pit family.

xpswmm, xpstorm and RAT-HGL

If cap2, cap3 and cap4 are all equal to zero then a fixed inlet capacity equal to cap1 will be exported to RAT-HGL. If the sum of these three values is greater than zero then a pit type will be created in the format of **pit_type-crossfall-roadgrade**. For example SA2-3-2 for a SA2 pit with a road crossfall of 3% and a road grade of 2%. A rating curve with this name will have to exist inside RAT-HGL. 12d has no way of transferring the rating curve itself into RAT-HGL.

PC Drain

Similar to RAT-HGL, PC Drain has it own rating curves defined internally. The road grade is sent as a separate piece of data to PC Drain so that the pit inlet capacity may be determined.

5.3.2 SAG Inlets PC Drain

PC Drain places a suffix code in the pit type to specify that the pit is a SAG pit. For example an 9S.03 indicates that pit type 9 is a sag pit and the maximum depth before bypassing is 30mm.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

6.0 12d Storm Analysis Bypass and Flooded Width Calculations

Once the bypass pits are selected and the drainage.4d file has been setup for bypass flow the storm analysis engine must have this feature enabled. Select **Consider bypass flow**.

Drainage Network Editor: Storm Analysis	_ 🗆 🗙
Drainage model drainage Overland flow model dwg d overland flow	
Main Flood Extents	
Storm Analysis and Network Design factors Average Recurrence Interval (years) 2 Consider partial area effe Rainfall location file (t IB\ALIS OLD Brichane 12dbydro Consider bypass flows	ts
	<u></u>

Excess Flow

The **Qx** value controls how excess flow is handled in the bypass flow calculations. If the hgl at the pit reaches the grate level then no more water can enter the pit even if there is inlet capacity. The flow that will not enter the pit is considered excess flow. When a value greater than zero is entered here, the inlet will initially have its inlet capacity restricted by this value. Upstream inlets are done first as this may reduce the hgl in the downstream system. The system is automatically rerun adjusting the flows by this amount each time.

If the inlet capacity is reduced to zero and the hgl is still above the pit then water is removed from the pit and considered as Qs (surcharge flow). In the hydraulic reports this value is found as a negative **Inlet Flow Qi**.

Overland Flow Calculations

The storm analysis engine will calculated flooded widths from normal depths along the flow path and ponding extents at SAG inlets. A bypass flow model (**Global-Utility Models** tab) is required for these calculations.

The **Utility String Editor** should be used where bypass flow strings combine at a pit. Without using this editor it is assumed that 100% of the catchment flow flows down each bypass flow string thereby overestimating the flooded widths.

The **Utility String Editor** could be used to change the Manning's along the string (approach channels to culvert for example) or the maximum flooded width warning limit (before a pedestrian crossing or a highway off-ramp).

The models and the default input data for these calculations are entered on the Flood Extents tab.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

📧 Drainage Network Editor: Storm Ar	alysis							
Drainage model drainage 2yr	Overland flow mo		dr bypass					
Main Flood Extents Dynamic Settings								
Calculate overland flood extents 📝								
Model for sag ponds	drainage flood sag ponds		cyan	Fill blend 0.2				
Model for flooded widths	drainage flood widths		cyan	Create edges				
Model for X-sections	drainage flood xsecs		magenta	Trim Levees 🔽				
Model for W warnings	drainage flood widths warn W		yellow	📕 Max W 🛛 上				
Model for D*V warnings	drainage flood widths warn DxV		dark red	Max D*V 0.6				
Model for Q warnings	drainage flood widths warn Q		red	(Q > Qcap)				
	X-section separation	2	L.					
	X-section length	20	F					
	Levee tolerance	0.1	F					
	Min longitudinal grade (%)	0.05	F					
	Model of exclusion zones							
	Manning's n	0.015						
	Manning's Q correction factor	1						
	Contain overflows within levees	5						
here a here a			V Mar					

Select Calculate overland flooded extents to active the fields on the panel.

Model for sag ponds is used to hold strings that indicate the extent of flooding at the pits marked as SAG inlets. The total approach flow is used with the cap_curve_sag in the drainage.4d file to determine the depth of flooding above the grate level. A closed contour at this flood elevation is then selected near the centre of the inlet. A super string is then created at this level with the colour and **fill blend** transparency selected (1.0 is solid).

Model for flooded width holds the strings indicating the normal depth - flooded width calculation results. These strings are created with a fixed elevation of the flood level. The strings will have string attributes with all of the calculations details.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Calculations

- 1. Cross sections are cut perpendicular to the overland flow string at the interval **X-section separation** with a length of **X-section length**. No calculations are done for sect of the bypass flow string with in **Model of exclusion zones** polygon.
- 2. The x-section string is then trimmed using the **Trim** settings. The section above had a x-section length of 20 and was trimmed at the levee. The **levees** setting has the routine search for levee (high points) on either side of the low point near the bypass flow string. The levee points are found if sections drops more than the **Levee tolerance** value after the high point is found.
- 3. The flow for the section is calculated using the bypass flow string chainage to interpolate between the upstream bypass flow and the downstream approach flow. The percentage of catchment flow used in the calculation of the approach flow for this bypass string may be changed using the **Utility String Editor**.
- 4. The slope of the surface near the bypass flow line is measured for each section. If the slope is less than **Min longitudinal grade** (%) then this cross section is skipped in the calculations.
- 5. **Manning n** value is the default roughness used in the calculations. This value may be changed at any vertex along the bypass flow string using the **Utility String Editor**.
- 6. The flow's calculated at the indicated level are multiplied by the **Manning's Q correction factor**. A factor of 0.8 would cause the flooded widths to increase and the road capacity to decrease.
- 7. The maximum depth calculated will be at the point where water overflows the edges of the section (**Road capacity**) unless **Contain overflow within levees** is selected. This will cause frictionless vertical walls to be placed at the ends of the section so that higher water level may be calculated when the flow is greater that the road capacity.

Warning Models

Model for W warnings will contain copies of the flooded width strings with the colour selected if the flooded width is greater than the default **Max W** value.

Model for D*V warnings will contain copies of the flooded width strings with the colour selected if the depth * velocity is greater than the **Max D*V** value.

Model for Q warnings will contain copies of the flooded width strings with the colour selected if the flow is greater than the capacity of the section. The capacity is the flow where the water over tops one of the sides of the section.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

7.0 Drainage Utility String Editor

Drainage_utility_string_editor

Position of option on menu: Design =>Drainage-Sewer =>Utility String Editor

The drainage utility editor is used to assign left and right bank roughness to cross section shape strings and to change the default values used for flooded width calculations along a bypass string.

First the string is selected at the vertex where the values are to be assigned. Next select the purpose of the string (cross section or bypass) to unlock the appropriate fields. A textstyle favourite is required as the vertex is labelled with the assigned values. Enter the values into the fields and then select Set to set the values as vertex attributes and create the label as a vertex annotation.

On selecting the utility string editor option, the utility string editor panel is displayed.

Drainage Utility String Editor	
Vertex index 0 🔯 🔷 🖒	Purpose Bypass
Style for vertex labels	A A
Mannings Values Left bank Right bank	<u>بالم</u>
Flooded Width Values Max flooded width Qapproach percentage Manning's n	
Super strings only! Pick Set	Finish Help

The fields and buttons used in this panel have the following functions.

Field Description Type		Defaults	Pop-Up
Vertex index	vertex	selected vertex	

Once the string is selected use this to move between vertices

Style for Vertex Labelstextstyle favouritetextstyles

A label is created on the vertex using this textstyle favourite

Left bank Input

mannings n value, to delete clear and select set

Right bank Input

mannings n value, to delete clear and select set

COURSE NOTES

STORMWATER DESIGN - Part 2

Max Flooded withInput

This changes the threshold were warning bars are created during flooded width calculations. It remains in effect till the next change or the end of the bypass flow string.

Qdc percentage Input

This changes the percentage of the Qdirect+Qcatchment that is used to interpolate the discharges during flooded width calculations. It is generally set on the first vertex past upstream pit and remains in effect till the next change or the end of the bypass flow string. The flow changes from the bypass flow at the upstream pit to this value/ $100^{\circ}(Qdirect+Qcatchment)$.

Manning's n Input

This changes the Manning's n value used for during flooded width calculations. It remains in effect till the next change or the end of the bypass flow string.

Pick button

Use this button to select the string. Select near the vertex you want assign the values to.

Set button

Creates the attributes and the label on the vertex.

Finish button

Removes the panel from the screen.

Help button

Launches the 12d help

COURSE NOTES STORMWATER DESIGN - Part 2

In the example above, The Qdc is set to 80% at the eastern end of the catchment. The Qdc is set to 2% for the water overtopping the road. The 18% of the area is not considered large enough to do the flooded width calculation for. If desired, another bypass flow string approaching from the east could be drawn but the final bypass string to the west (direction during bypass should remain).
Civil and Surveying Software

COURSE NOTES **STORMWATER DESIGN - Part 2** 8.0 Open Channel Flow

12d can model flow in open channels a trapezoidal sections. Suggestions for drainage network editor settings are listed below.

Generally, simple channels leading into a pipe network are often not modelled as open channels. The flooded width calculations can perform flooded width calcs (normal depth however) along the channel and the depth at the headwall is calculated using the headwall ku method.

If gradually varied depth/backwater calculations are desired then the channel will need to be modelled as a drainage string. Also if the pipes discharge into a channel then this channel will also need to be modelled as a drainage string.

Key points

The pit grate level must always be at or above the top of the open channel conduit.

Changes in vertical grade and horizontal alignment require a pit in the drainage string. The pit diameter is usually set to zero.

Channels may exist in the tin or you may be proposing a channel to be cut into the tin. The grading and grate level modes will be different for each case. These channel type will be referred to as "Existing" or "Proposed"

hment Pit Pipe DEFAULTS G	GLOBAL Results
Pit name 18	Pit type CHNL auto
Main Setout Bypass Bypass Shape	Basin Hos
Cover RL mode Max Obvert	Gover L 24.080343
Grate RL mode Max Obvert	Grate RL 24.080343
Pit diameter 0	Sump offse
Inlet data	
Ku method Direct	Inlet config On-grade Pit 🗸
Ku config	Qdg (minor)
Ku 🚺 📕 Kw	Qdg (major)

Pit-Main Tab

 Selecting the CHNL auto pit typechanges many setting in the DNE. Cover RL mode is changed to Max obvert. Grate RL mode is changed to Max obvert.

Pit diameter of diameter of zero. This will result in a single line on the drainage long sections

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

instead of a pit.

Ku method is set to **Direct** and a **Ku** of 0 for the channel change of grade points (pits). **Inlet config** - On-grade pit - it has a 200% inlet capacity. The 200% inlet capacity is in case a choke factor is accidentally applied.

2. Select the Pit Setout tab

Pit-Setout Tab

Drainage Network Editor	
Catchment Pit Pipe DEFAULTS GLOBA	L Results
Current pit Pit name 18	Pit type CHNL auto
Main Setout 2 ss Bypass Shape Basi	n Motes
Pit setout	
Setout xy mode Pit Centre	Easting 5003.841157
Setout distance 0	Northing 7312.32155
Setout z mode Sump Invert	Setout RL 23.080343
Pit road chainage	
Chainage mode No Road 🗸 🗸	🖌 🔁 Chainage 🔄 上
Road name	Offset

Setout xy mode is set to Pit centre

Setout z mode is set to Sump Invert which is the lowest of the channel inverts if Sump offset = 0(Main tab).

3. The **Chainage mode** may be be changed to **No Road** if the channel centre line is not to be used for setout. If the default was **Centre string** this will stop the Problem message saying the centreline string is not found.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Pipe-Main Tab

Drainage Network Editor	
Catchment Pit Pipe 4 FAULTS GLOB	AL Results
Pipe downstream of current pit	_
Pipe ID 18 to 17	Pipe type CHNL GRASS PROF 🤝
Main Design Channels Notes	
Invert levels	
US Invert 23.080343	DS Inver 22.813673
Dimensions	
Diam/Height 0,5 6	y e 🔽 🔽
Width 1	Jum of 1
Top width 5	Disch Coef
	Length 53.334
Section location	
Other properties	
Roughness type Manning	Qdp (minor)
Roughness 0.04	Qdp (major)
US defl11°48'20"	DS defl45°06'25"

- 4. Change to the **Pipe->Main** tab
- 5. Change the **Pipe type** to **CHNL GRASS PROPOSED**. This changes the following: the **Roughness type** to **Manning** the **roughness** for the open channel to 0.040
- 6. Set the Height, Top width and Bottom width of the channel.

Note: The pipe type can now be changed back to channel if you needed to alter any of the locked settings. Selecting the **CHNL GRASS PROPOSED** first set most of the setting correctly as a good starting point.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Pipe-Design Tab

🖳 Drainage Network Editor	
Catchment Pit Pipe DEFAULTS GL	OBAL Results
Pipe downstream of current pit	
Pipe ID 18 to 17	Pipe type CHNL GRASS PROF
Main Design 7 nnels Notes	
Invert design	
Lock US Invert	Lock DS Invert
Grade mode	Z Cover limit
DS vert defl	Min grade % 🛛 🔛 🚹
DS align mode IL-IL Drop 🛛 🤜	Align drop
Pipe size design	
Lock pipe size 📃	Min pipe height 📘
	Max pipe height
Design mode	Open Channel: Freeboard Design 🛛 🗸
Freeboard limit at US pit	
Flow-depth limit at pipe entrance (%)	

- 7. Change to the **Pipe->Design** tab
- 8. Set the **Align mode** to "IL-IL drop"
- 9. Set the Align drop value to 0 (unless you are designing drop structures for your channel.

10.Min Grade % for open channels is usually much less than pipes.

Note: The **Design mode** has been changed to "**Open Channel: Freeboard Design**". This will allow supercritical flow to continue through the channel junctions. Often the Freeboard limit will be different for a channel than the pipe system.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

9.0 Horizontal Change in Road Alignment (Adjust Pit Locations)

It is advised that you have a link in your road template that is used for setting out the centre of the drainage pits. This make the job of placing the pits much quicker and if the road alignment moves horizontally the pits can be moved back onto these strings (moved perpendicular to the road string).

First we will widen the road using the templates. From the main menu select

Width H	Height 1	XFal % -3	Nome lok	Colour yelow			3	2. Lb the OK button.
valid colour	2	<u>Acı</u>	oly j	Dre	w _	Finish	Help	

📑 Template Cre	ate/Edit 💶 🗆 🗙			
Template name	Full road width			
editing fixed template links				
Fixed Decisions Cut Fill Final Cut/Fill				
Finish	Help			

1. Select the Full road width template

2. Lb the **Fixed** button.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

	Fixed Te	emplate	- "Full ro	ad wid	th"			
_								1. Change the Width to 4.
Γ	Width	Height	XFal %	Name	Colour			
	4.0	1	-3	lok	yelow			2. Lb the OK button.
12	0.45	-0.04		inv	dark blue			
	0.01	0.15		tak	dark green			
	0.15	٥		bok.	red			
	2.5	2	2.5	bdy	magenta			
67	1							
1.	I							
- V	alid colou	r						
	QK	2 <mark>2</mark>	Ap	ply	Drow	Finish	Help	

Now we can move the pits back onto the lok string. From the main menu select,

Design->Drainage-Sewer->More Drainage->Adjust pit locations

📑 Adjust F	Pit Locations
Data sour	rce of pit layout strings
View	Model String Info 3 Point ID's Polygons Ext
Name	Roads S
1	2 Vila

1. LB the **filter** button

- 2. Lb more info **View** button and select the Roads view that holds all of the road strings.
- 3. LB the **String Info** tab

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Adjust Pit Locations	
Data source of pit layout strings	<u>P</u> 7
View Model String Info P	oint ID's Polygons Ext 🔸 🕨
Туре	any string 🔽
Name	*lok 4 N
Colour	
Pt-line	any string 🔽
Style	
Weight	
Filter Select 5	Use log lines 🔲
Drainage model	drainage <mark>5</mark> 6
Search distance	1 7 🛃
8 elements(s) selected from 23 mod	el(s)
<u>Run</u> 8	Einish

- 4. type ***lok** to select both the llok and rlok strings.
- 5. Lb **Filter Select** button to see how many strings are selected.
- 6. LB the **Drainage model more info** button ans select the **drainage** model.
- 7. Leave the default **search distance** as 1.
- 8. Lb **Run** to move the pits.

There is an undo for this operation.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

10.0 Major Flood Events

To keep the results file from the minor event rename the drainage models using

Models->Global Rename

Search/Replace Match sub strings								
		Pattern expression Search drainage*	C Regular expres Search Arainage Replace Arainage	sion pe(.*)\$ 10 \$1				
ΓT	est d	lata						
		Input	Output	Status				
	32	drainage	drainage 10	match				
	33	drainage LS plot1	drainage 10 LS plot1	match				
	34	drainage catchment labels	drainage 10 catchment labels	match				
	35	drainage flood sag ponds	drainage 10 flood sag ponds	match				
	36	drainage flood widths	drainage 10 flood widths	match				
	37	drainage flood widths warn DxV	drainage 10 flood widths warn $D{\times}V$	match 2				
	38	drainage flood widths warn Q	drainage 10 flood widths warn Q	match				
	39	drainage flood widths warn W	drainage 10 flood widths warn W	match				
	40	drainage flood xsecs	drainage 10 flood xsecs	match				
		desissas Isbola	drainago 10, Jabola	match				
Γ								
		Rename 4	Finish 5	Help				

- 1. Type the **Search** criteria to select the drainage models
- 2. Type the **Replace** criteria. Note the 10 has been added.
- 3. Scroll down to see the new model names.
- 4. Lb Rename button
- 5. Lb the **Finish** button.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Next, create a copy of your drainage network and add a suffix to the model name. Select **File IO-**>**Data Output->12da/4da data.**

🔜 Write 12d Solutions Ascii Data	_ 🗆 🗙	1. Select the drainage model
Data to write		 Type the name of the 12da file drainage 10 Lb the Write button
Format	12d ascii 🔽 🔽	4. Lb the Finish button.
Ascii file	drainage 10.120 2	
Decimal places	8 123	
Ouput strings referenced by computators	No	
Output times		
Output ID's		
Output drawables		
Output super alignment parts		
Output attribute uid's		
Output project attributes		
finished writing file		
<u>W</u> rite 3 Finish 4	Help	

Now read the same file into 12d using a suffix 10. Select File IO->Data Input->12da/4da data.

COURSE NOTES STORMWATER DESIGN - Part 2

For major flood events the user may desire to use an alternative set of values for

Catchment tc, Catchment C, Pit direct inflow (Qdi), Pipe direct inflow (Qpi), Pit choke factor for ongrade inlets, Pit choke factor for SAG inlets, Outlet tailwater levels.

These controls are found on the Storm Analysis Panel, Main tab.

Drainage Network Editor: Storm Analysis	<u>_ </u>
Drainage model drainage 100 1 Overland flow model dr bypass	
Main Flood Extents	
Storm Analysis and Network Design factors Average Recurrence Interval (years) 100 2 Consider partial area effects	<u>ا</u> ح
Rainfall location file \$LIB\AUS VIC Melbourne.12dhydro Consider bypass flows Rainfall method IFD Table Qx routing increment 0.01	
Storm event type Major Ensure pipe Q < Qcap Pipe travel time method t = L/Vcap Modify pipe inverts Preferred pipes file \$1 TB\metric.pip Optive allow pipes to upsize	
Generate plan results Generate hydrology report Drainage plan PPF Its.drainplanppf Model for plan results Grainage 100 Full clean of model beforehand V	
Generate long-section results Image Drainage long-section PPF design.drainppf Model stem for long-section results drainage 100 Clean model(s) beforehand Image	

- 1. Ensure you have selected the drainage 100 model.
- 2. Type the new return period.
- 3. Select the **major** storm setting.
- 4. turn off the **Modify pipe inverts** and **Modify pipe sizes**.
- 5. Change the name of your report files by adding **100** after drainage.

COURSE NOTES **STORMWATER DESIGN - Part 2** 11.0 Excavation Quantities

Sample templates are included in the 12d library (pipe template.tpl). The templates from this template library may be added to your project using

Design=>Templates=>Utilities=>Input.

This routine uses 12d templates to calculate the excavation volume for all of the drainage strings in a model. An option to create section for a tin on top of the pipe is also available so that the drainage long sections can include hatching between the obvert of the pipe and the design tin under roads.

Templates with names set to the pipe diameters (times 1000) are used for the calculations, thus trench shapes can be customised and over excavation for bedding materials can be included. Net area calculations to exclude pipe area are not supported.

Key points

- 1. One template for each pipe size (mm)
- 2. If obvert templates are used, add the prefix "obvert" to the pipe size
- 3. Carefully consider the tin selected.

A template must exist for each pipe size in the model (pipe size x 1000). For example a 0.3m pipe will require a template to exist named 300. A 0.5ft pipe would require a template named 500. Sample templates are included in the courses section of 12djobs (\12djobs\courses\7.00\drainage). These may be copied to your *.project directory and then added to your project using **Design=>Templates=>Utilities=>Add=>All all to project.**

The templates are run along the strings and the total volumes are reported. Volumes for each strings are given in the report file. An example follows.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

BEGIN APPLY TEMPLATE REPORT							
apply template to	o string report -						
string tin separation left template right template cut volumes and fill volumes and	E design 10.000 375 375 d areas are negat nd areas are posi	ive tive					
chainagese se	ectional informat cut area	tion fill area -	intermediate infor cut vol -	mation fill vol	accumula -cut volumefi	ative informa ill volume	cion -balance
0.000	-1.434	0.000	0.771	0.000	0.000	0.000	0.000
0.550	-1.367	0.000	-0.7/1	0.000	-0.771	0.000	-0.771
10.000	-1.642	0.000	-14.222	0.000	-14.992	0.000	-14.992
20.000	-1.416	0.000	-13.295	0.000	-30.286	0.000	-30.286
21.313	-1.393	0.000	-1.845	0.000	-32.130	0.000	-32.130
21.863	-1.493	0.000	-0.794	0.000	-32.924	0.000	-32.924
total cut total fill balance ie excess of cut o	over fill	-32.924 0.000 -32.924 32.924					

----- END APPLY TEMPLATE REPORT -----

If a tin is created from these strings then volumes by depth can be determined using **Design=>Volumes=>Exact=>Tin to tin**

Usage

Access this panel from the menu selection

Design => Drainage => Reports => Excavation Quantities

🗾 Drainage Exca	v Quant 📃	
Drainage model	drainage	
Strings model	exc strings	
Sections model	exc sections	
Report Name	Excav volumes.	\bigcirc
Ground surface tin	existing	Ø
Separation	2	F
Section colour	yellow	
Clean section/string	g models	\checkmark
Stop section at edg	je of manhole	
Use obvert templat	es	
Tin <existing> ex</existing>	ists	_
Process	Finish	

The fields and buttons used in this panel have the following functions.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Field Description	Туре	Defaults	Pop-Up
Drainage model	input box		
Model to contain all of the	pit and pipe ne	etwork to be worked on	
Strings model	model box		
Strings generated from the	templates will	be stored in this model	
Sections model	model box		
Sections generated from the	e templates wil	ll be stored in this mode	el
Report name	input box		
cut and fill volumes will ne	sent to this rep	port	
Ground Surface Tin	tin box		
tins from which the volume	s will be calcu	lated	
Separation	real box		
distance between the section	ons		
Sections colour	colour box		
Sections generated from the templates)	e templates wil	ll be assigned this color	ur (strings colours are defined in the
Clean section/strings model	tick box		
Delete the strings in these r	models before	processing.	
Stop section at edge of pit		tick box	
Template are run from pit c if selected. This is often sel	entre to centre ected with the	if this is not selected. T following option Use o	he templates stop at the edge of the pit bvert templates.

Use obvert templates

tick box

Templates must be named with the prefix "obvert". i.e. **obvert 300**. The template is still run along the invert of the pipe but the user now has a section "set" of templates that can be used to create a tin on top of the pipe as well as below.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

12.0 Network Quantities Report

This panel is accessed from the menu selection

Design => Drainage Sewer => Reports=> Network Quantities

Key points

- 1. Items are counted/totalled by depth and optionally type.
- 1. The routine will not "double count" items even if the ranges overlap.
- 2. Types are case sensitive, types with spaces in the name must be enclosed in quotes and the wild card * may be used.
- 3. Use vertically offset tins and "banded" depth ranges to get quantities under roads, foot paths etc. This is discussed later in detail.
- 4. Erase count file fields if the items are not to be counted.

Drainage Quantities	
Data String source	
Pipe size filter	diameter 🗸 🗸
Tin	Ø
MH config file	\$LIB\manhole_depths.4d
Pipe config file	\$LIB\pipe_depths.4d
HC config file	\$LIB\hc_depths.4d
HC pit config file	\$LIB\hc_pit_depths.4d
HC jump ups config file	\$LIB\hc_jump_ups.4d
Report file	quantities.rpt 🔁
Report Unused Ranges	
Report Types	\checkmark
Count	Finish

The fields and buttons used in this panel have the following functions.

Field Description	Туре	Defaults	Pop-Up
Data String Source	Choice		

usually the entire model is selected but view is also available for combining models

COURSE NOTES

STORMWATER DESIGN - Part 2

Pipe size filter

diameter or pipe size attribute

The second item in a count line is used to filter by **diameter** (in meters/ft) or the **pipe size attribute**. The **diameter** can only be used when no box culverts or trapazoidal channels are used. The **pipe size attribute** is the label genrally used in the plan plots. This is the pipe size in mm/inches (375), for box culverts width x height (750x375) and for trapazoidal channels TopwidthBottomwidthxHeight (T5000B1000x500).

Tin

tin box

Choice

This tin will be used for the pipe and pit depths.

MH config file file box

This file specifies the types and depth ranges for the pits. Details of this file are contained below.

Pipe config file file box

This file specifies the types and depth ranges for the pipes. Details of this file are contained below.

HC config file file box

This file specifies the types and depth ranges for the house connections. Details of this file are contained below.

HC pit config file file box

This file specifies the types and depth ranges for the HC pits. Details of this file are contained below.

HC jump ups file file box

This file specifies the types and depth ranges for the house connections jump ups. Details of this file are contained below.

Report file file box

a sample report file is given below.

Report unused ranges tick box

the depth ranges for the pit/pipe/house connections are defined in the *.4d files. Selecting this option will cause the depth ranges in the file to be printed even if there are no pit/pipe/house connections in these depth ranges (zero quantity values will be shown).

Report types tick box

Selecting this option will cause the pit/pipe/house connection types used in the model types to be listed (even if quantities are not requested in the *.4d files). Since this is a complete of the type used in the model, the list informs the user what types have not been included in the quantity calculation.

Count

button

executes the option.

Finish

button

removes the dialogue from the screen

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

The *.4d files listed above are contained in the 12d **library** directory. Each line is the file performs a count (count lines). No items are counted twice. Therefore, if an item is counted its type and then a count line is found the wild card is used for the type, the type already counted will not be included in the count.

The format for a count line is three or four values (space delimited) per line. Size is optional.

<type (from drainage.4d)> <size> <starting depth> <ending depth>

Notes:

All types with spaces in the name must be enclosed in quotes The wild card * may be used.

The **size** is optional and if omitted the all sizes will be counted in this group (do not use the * for a wild card).

The starting depth and ending depth are required for all count lines.

Quantities Under Roads and Footpaths

By creating super tins with vertically offset sections, quantities under roads, footpaths etc. can be determined. for example.

Offset your road design tin up by 1000m (**Tins->Utility->Translate/Copy**) and then use the depth range 1000-1999 for pipes under roads.

Create a tin from the footpaths only, null by angle length with a small length to remove the road and then offset it vertically by 2000m. the depth range 2000-2999 is not the quantities under the footpath.

Sample count lines

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

// sum concrete cover manholes is various ranges
"CONC COVER" 0.0 1.6
"CONC COVER" 1.5 3.0
"CONC COVER" 3.0 999.9 // this is expected to be zero
"CONC COVER" -999.0 0.0 // trap errors

 $\ensuremath{{\prime}}\xspace$ any that are not Concrete cover will be counted here

* 0.0 1.6 * 1.6 3.0 * 3.0 999.9

Sample count lines for pipes follow.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

 $\ensuremath{\prime\prime}\xspace$ sum class 2 pipes by diameter and for various ranges

// count 375

2 0.375 0.0 2.0 2 0.375 2.0 5.0 2 0.375 5.0 999.

// count 450

2 0.450 0.0 2.0 2 0.450 2.0 5.0 2 0.450 5.0 999.

// count 525

2 0.525 0.0 2.0 2 0.525 2.0 5.0 2 0.525 5.0 999.

// count pipe sizes that were missed

2 * 0.0 2.0 2 * 2.0 5.0 2 * 5.0 999.

// count all other missed pipes

* 0.0 999.

COURSE NOTES

STORMWATER DESIGN - Part 2

13.0 Exporting to Drainage Design Software Packages

12d contains most of the data required for your drainage design packages. However, each packages has specific design variables that 12d does not have access too. The design process is intended to export your data from 12d to the design package, design the drainage system and then read the results back into 12d for your long sections.

If pits/pipes are to be added/deleted from your network during the design process you are safest to add/delete the pit/pipe to 12d and to your design package separately.

Not recommended and as a poor alternative, you have the option of reading the results back into 12d, adding/deleting the pits/pipes and then exporting the data to a new drainage project in your drainage design software. As 12d does not have access to all of the data in the design packages this method is not recommended!

Some of the drainage design programs offer a third option that allows you to import data "on top of" an existing project thereby merging and over writing the existing data. Be sure to contact the drainage software supplier to obtain exact details of how the merging process is performed.

The interface is run by selecting Import/Export from the Drainage Network Editor

Design->Drainage-Sewer->Network Editor

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

🗖 Drainage Network Editor: In ort/Export 💦 🔲 🔀
Drainage model drainage network
I/O format Spreadsheet clipboard 🗸
I/O file name Clipboard.txt
• Export
Export catchment details
Export bypass flow details
Export pipe inverts and sizes
Spreadsheet options
Export all junction pits
Preset output All data
List file name output_list.txt
O Import
Hold obverts on import
Generate plan results
Drainage plan PPF
Model for plan results
Full clean of model beforehand
Generate long-section results
Drainage long-section PPF
Model stem for long-section results DRN LONG PLOT
Clean model(s) beforehand
Run Back to Editor Help

The **Drainage model** is the model currently being edited.

The **I/O format** selects which external program the 12d is interfacing with. Some programs use the windows clipboard and others use files. If the clipboard is used the data will also be written to a file by 12d in case you need to take the data to another computer.

Export enables the export fields below and exports when **Run** is selected.

The **Export options** have slightly different effects depending on the **I**/ **O format** (program) selected above. Therefore they will be discussed ater with the various formats.

Export pipe diameters and inverts is generally select for existing systems only. If your design program will set invert levels and pipe sizes then turn this tick box off for new systems.Some design programs will require initial inverts and pipe sizes. In this case this box should be selected on the first export.

Export default catchment/pit parameters is generally selected for the first export. For subsequent exports turn this selection off and then only the catchment areas (if the model is supplied above) will be exported.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

14.0 Drainage Data Input and Output to Spreadsheets

Spreadsheets are an effective method to manage the numerous variables urban drainage designers create in the modelling process. Spreadsheet data can be transferred to and from 12d in tab delimited files and stored within 12d as "user definable attributes". These attributes are linked to the pit and pipes within a network. Drainage long section plots can display the pipe attributes in the "arrows" data area and pit attributes in the bubbles area. Drainage plan drawing can also show these pit and pipe attributes.

Drainage strings will be created if they do not exist in the model but pits cannot be added to existing strings.

See also

12d to spreadsheet transfers Spreadsheet to 12d update and create Spreadsheet options

14.1 12d to spreadsheet transfers

This interface is accessed the **Import/Export** button on the Drainage **Network Editor**.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Drainage Network Editor	: Import/Export 💦 🗖 🔀		
Drainage model	drainage network	Select S	Spreadsheet clipboard
I/O format	Spreadsheet clipboard		
I/O file name	clipboard.txt 🗀		
 Export Export catchment details Export bypass flow details Export pipe inverts and sizes Spreadsheet options 	 ✓ ✓ ✓ 	These of spreads	options are not used for heet export.
Export all junction pits Preset output All da List file name Outp	ata	Usually to expo end of a rarely n	y leave this off! Select rt the junction pit at the all drainage lines (very needed).
 ✓ Import Hold obverts on import Generate plan results ✓ ✓ ✓ Model for plan results Full clean of model beforeha Generate long-section result: Drainage long-section PPF Model stem for long-section Clean model(s) beforehand 	Ind	You ma output i using sp entry, th ILSAX for addi for eith Select I the clip	y also select to limit the of desired. If you like preadsheets for data ne PCdrain data and data formats are useful ing data for the first time er program. Run to place the data on board.

14.1.1 Options

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

The Spreadsheet Options section allows the user to define the amount of data exported.

Drainage Network	Editor: Import/Export	
Drainage model	drainage network	
I/O format	Spreadsheet clipboard	
I/O file name	clipboard.txt	
Export Export deta	ils	
Export bypass flow det	ails	
Export pipe inverts and	sizes	
Spreadsheet options Export all junction pi	ts	
Preset output	All data	
List file name	output_list.txt	All data
		PC Drain
O Import		Ilsax House connections
Hold obverts on import		Customised list file
Conerate plan vit	St- John	

Export all junction pits when selected will repeat the data for the junction pit at the end of each branch line.

Preset Output this choice box offers the following choices:

All Data: All of the 12d drainage string data and the user defined attributes will be exported to the clipboard in a tab delimited format. The 12d data names and the user defined attribute names will appear at the top of the spreadsheets columns.

ILSAX: For the ILSAX program, the spreadsheet column headings will change depending on the pipe and catchment indicators (P2 card) and the inlet type (P3 card). Therefore, use the ILSAX pipe editor macro to set up one pit/catchment for the type of data you wish to enter. Now when you export the pipe network data the column headings will include the names of the relevant parameters.

User defined below: The Customised list file name is used to define the drainage values, their order and format you desire.

The **customised list file** is a text file where each line contains a drainage variable or a spreadsheet IO command (blank lines are ignored unless preceded by the header command). The spreadsheet IO commands are all lower case and listed below:

header	to define a line of text to be exported
blank	to leave a blank column in the output
pit data	the following attributes are for the pit.
downstream pit data	the following attributes are for the downstream pit.
upstream pit data	the following attributes are for the upstream pit(s).
pipe data	the following attributes are for the pit's outlet pipe
downstream pipe data	the following attributes are for the downstream pipe(s)
upstream pipe data	the following attributes are for the upstream pipe(s)
variable name	a 12d drainage variable names
factor	the following variable is multiplied by this factor
decimals	the following variable will export with these decimal places

COURSE NOTES STORMWATER DESIGN - Part 2

The simplest way to create your own customised tab delimited file is to set the **Preset Output** field to **All data** and leave the **customised list file name** field blank. Selecting **Set**, **Finish** and then **Copy** from the main dialogue. The data will be placed on the clipboard and a **customised list file**, named **output_list.txt** will be created containing the names of all of the drainage variables in the 12d model. Use a text editor to add/or delete the variable names, change their order and/or add spread-sheet IO commands. **Save the file with a new name!** The **output_list.txt** file is overwitten on every export.

A listing of a customised list file follows. Note the words in the header file have a "tab" between them so that they will be spaces across the spreadsheet columns.

header								
Pipe Details								
header Name Length	U/S IL	D/S IL	Slope(%)	Class	Dia I.D.	Rough	Pipe Is	No. Pipes
pit data *pit name								
pipe data *length low ch invert high ch invert								
factor 100 *grade								
pipe type								
factor 1000 diameter								

After creating your customised list file, select **Options** again and change the **Preset Output** field to **User Defined below** and enter the new **customised list file** name that you saved above. Select **Set** then **Finish** and finally **Copy** to put the formatted data onto the clipboard.

The data can be pasted into a spreadsheet program for checking or additional formatting.

CUSTOM FORMATED DATA MIGHT NOT BE PASTED BACK INTO 12d!

The data must be in the "12d drainage spreadsheet" format to be read into 12d.

Caution with pit names in the form 1-1 or 1/1. Some spreadsheets will interpret these values as dates. If you use these formats for your pit names you will have to paste command them in once, format the columns that contain the pits names as text data and then paste the information in again.

One final word on using the copy/paste commands in the Microsoft Excel program. The Paste Special command using the "Skip Blanks" option will allow you to copy a large block of 12d data (with blanks in it) on top your data so that your data is preserved where it coincides with the blanks. To use this option paste the data into a blank spreadsheet and then select copy again. The Paste special option with "Skip Blanks" will now be available.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

14.1.2 Spreadsheet to 12d transfers

This item is accessed from the Import/Export button on the Drainage Network Editor.

The following panel will appear.

Drainage Network Edito	or: Import/Export		
Drainage model	drainage network		
I/O format	Spreadsheet clipboard		Select the Spreadsheet clipboard
I/O file name	clipboard.txt		format.
Export			
Export catchment details			
Export bypass flow details			
Export pipe inverts and sizes			
Spreadsheet options			
Export all junction pits			
Preset output All	data		
List file name	put_list.txt	<u>^=.</u>	
			-Select Import
💿 Import 🚄			
Hold obverts on import			This is ignored on spreadsheet
Generate plan results			imports.
Drainage plan PPF	\$LIB\drainag	je_c î=.	L
Model for plan results	DRN PLAN PL	.OT	
Full clean of model before	and		
			Select Run to update the drainage
Senerate long-section resu	lts 🔲		model.
Drainage long-section PPF		·~=.	
Model stem for long-section	n results DRM LONG P	LO1	
Clean model(s) beforehand			
	<u></u>		
	k to Editor	Help	

Tab delimited, "12d drainage spreadsheet" format or "from to" format data must be on the clipboard in order to update a 12d drainage model or create a new model. These format are described below.

14.1.3 Updating an Existing Model

The data usually is generated by 12d using the **Export** option, pasted into a spreadsheet and then copied back to the clipboard so that 12d can be updated.

When 12d exports the drainage model to a spreadsheet it includes a column for the unique string

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

identifier and a unique pit identifier (unique to the drainage model not the 12d project). The names of the strings and pits may be changed via the spreadsheet if these columns are present at import time.

If the pit id column is not present, 12d will search the drainage model for a matching pit name. When the pit is a junction between drainage lines, only the trunk line will be the data updated.

14.1.4 Creating a New Model

It is possible to create a new string or an entire drainage network using this format. However, pits cannot be added to an existing string. The entire drainage string must be created at once. Two formats are available, the "from-to pit" format and the "12d drainage spreadsheet" format.

At present the network editor must select a drainage string to become active. Therefore, if you are not adding strings to a network, you will have to great a drainage network with one "dummy" pit. Select this one "dummy" pit to activate the editor. After importing the data and the new drainage lines are created the "dummy" pit may be deleted.

12d drainage spreadsheet Format

The top left cell in the clipboard data must be the text "12d" to specify this format. The minimum amount of data required to create a new string is the string name, pit name, x and y coordinates. You can add as much additional data as you have available. This would include pipe diameters inverts etc. The pits must be listed from upstream to downstream order. If the string is to join a trunk line, the junction pit must be included for both the tributary and the trunk line.

An example file exists called **new_network.txt** is supplied in the library. Open this file in a spreadsheet or a text editor and copy it to the clipboard. Set the **I/O Action** to **Import** and select **Run**. The new drainage lines will exist in the model currently being edited.

From-to Pit Format

The top left cell in the clipboard data must be the text "from to" to specify this format. The minimum amount of data required to create a new string is the upstream pit name "*pit name), the downstream pit name (*ds pit name) and the x(x location) and y(y location) coordinates of the upstream pit. If the string is to join a trunk line, the junction pit must be included for both the tributary and the trunk line.

An optional column for the pit cover elev (cover elev) may be specified. Once the network has been created additional pipe and pit data may be added using the "12d drainage spreadsheet" format described above.

An example file exists called **new_from_to_network.txt** is supplied in the library. It is shown below. Open this file in a spreadsheet or a text editor and copy it to the clipboard. Enter a new model name in the **Drainage model** field and select paste. The new drainage model will now exist.

COURSE NOTES

STORMWATER DESIGN - Part 2

from to	pit	pit	pit	pit
*pit name	*ds pit name	x location	y location	cover elev
text	text	real	real	real
E/1	A/3	5309.458	7336.935993	29.2173
D/1	A/4	5277.189	7336.935989	28.5071
C/1	B/3	5251.238738	7423.99485	31.5257
A/1	A/2	5354.629222	7336.935998	30.2115
A/2	A/3	5340.019987	7322.035996	29.89
A/3	A/4	5293.458002	7322.035991	28.8652
A/4	A/5	5250.182625	7322.035986	27.9127
A/5	A/6	5217.194202	7322.035983	27.1867
A/6	A/7	5183.458002	7322.035979	26.4442
A/7		5152.698693	7322.035975	25.7672
B/1	B/2	5289.42875	7422.289079	32.7197
B/2	B/3	5264.638564	7393.947083	30.7948
B/3	B/4	5249.738564	7384.207593	30.4187
B/4	B/5	5249.738564	7351.201545	29.1444
B/5	A/5	5233.426685	7336.935984	27.544

14.2 "12d drainage spreadsheet" Format

Each column of data is used for a 12d drainage variable or a user defined attribute. Each row represents a pit and the downstream pipe (controlled by the direction of flow variable) within the drainage network. A sample is shown below.

COURSE NOTES STORMWATER DESIGN - Part 2

- 						
12d	pit	pit	pit	pit	pit	pit
*string Name	*pit name	pit type	pit low ch invert	pit high ch invert	pit id	string id
text	text	text	real	real	integer	integer
E	E/1	SA2	28.108	28.108	1	67389
E	A/3	SA2	27.7559	27.7559	2	67389
D	D/1	SA2	27.3961	27.3961	3	68100
D	A/4	SA2	26.8018	26.8018	4	68100
С	C/1	SA2	30.67	30.67	5	72072
С	B/3	SA2	29.563	29.563	6	72072
A	A/1	SA2	29.1026	29.1026	7	82469
A	A/2	SA2	28.7811	28.7311	8	82469
A	A/3	SA2	27.7652	27.7059	9	82469
A	A/4	SA2	26.8127	26.7518	10	82469
A	A/5	SA2	26.0867	26.0244	11	82469
A	A/6	SA2	25.3442	25.2942	12	82469
A	A/7	SA2	24.6672	24.6672	13	82469
В	B/1	SA2	31.2759	31.2759	14	192066
В	B/2	SA2	29.351	29.301	15	192066
В	B/3	SA2	29.123	29.073	16	192066
В	B/4	SA2	28.0444	27.8951	17	192066
В	B/5	SA2	26.3447	26.2947	18	192066
В	A/5	SA2	26.0744	26.0744	19	192066

Duplicate Definitions

Strings Variables such as "direction" are may be defined for numerous pits on the same string. Searching in a top down direction through the file, the last definition found for the string will be set.

Invert levels may be set via pipe data or pit data or combined. It is recommended that the user only use one method and not combine them. Both are exported so delete the ones you are not going to use. The variables are processed from left to right, so if duplicate definitions of an invert level or found the right most data will be set.

The format definition

- 1. Row1, column 1 must contain either "12d", or "from to". Therefore, the first column must be a 12d drainage variable (cannot be a user defined attribute).
- 2. Row 1. The text <pit> at the top of the column indicates the column contains a user defined pit attribute and similarly <pipe> indicates a user defined pipe attribute.
- 3. Row 2. This row contains the names of the 12d drainage variable names and the pit/pipe attributes. All names are case sensitive so be careful where you use capital letters. A list of 12d drainage variables is found below.

Names beginning with an asterix (*) will not be processed (except pit/string names when unique identifiers are present in the data). 12d drainage variables names beginning with an asterix indicate that this data was calculated at export time and cannot be read back into 12d (for example, pipe length, pipe grade and deflection angle).

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Prefixing an user defined attribute name with "DELETE" (no quotes, note the space after the DELETE) will cause the attribute to be deleted from all pits/pipes within the model.

4. Row 3. The text in this row define the type of attribute to be stored within 12d. The only valid choices are;

integer real text

If you want to change an attribute type you must delete the attribute and create it again. If you simply change the attribute type in the third row then that attribute will not be updated.

- 5. Blank lines may be inserted as desired.
- 6. You are not required to fill in all of the cells in the spreadsheets. Blank cells are ignored (you must use a space to remove all data from text attributes (the space will not be stored).
- 7. Pipe names are included in the data so that they can be changed but they are <u>not</u> used to identify the pipe. Pipe data will always be assigned to the pipe following the pit in the direction of <u>ascending</u> chainage. If flow directions is ascending then the pipe data will be for the downstream pipe. If the flow direction is descending then the pipe data will apply to the upstream pipe.

Manhole Variables	Pipe Variables	String Variables
*string Name	pipe name	direction
*pit name	pipe type	
pit type	low ch invert	
pit diameter	high ch invert	string id
pit low ch invert	diameter	
pit high ch invert	*length	
pit road chainage	*grade	
pit road name	low hgl	
*pit angle	high hgl	
*pit drop	pit hgl	
*pit depth	flow	
*pit chainage	velocity	
x location		
y location		
cover elev		
*fs elev		
*ns elev		
pit id		

14.3 12d Drainage Variable Names

COURSE NOTES STORMWATER DESIGN - Part 2

15.0 Detailed Drainage Plan Drawing - Creating MH Symbols

There are many methods to create the drainage symbols and one is presented here. The pit symbol is drawn so that the symbol "sits on" the road string that it aligns with (the road string is the y reference). For drawing lintels and grates, assume the road is downhill to the right. See diagram below.

Two symbols are required, one for the left side of the road and one for the right side (referred to as the mirror symbol in the plan ppf). 12d checks the downhill direction of the road strings when using these symbols to determine which is the left and right side of the road.

Either draw your own symbol or import the symbols using File IO->Data Input->4ds/12da data and selecting the file inlet symbols.12da

To create the symbol in 12d draw the left pit symbol in a model by itself. The pit should "sit on" the zero "y" grid line. A 900 wide by 600 long inlet with a 1.2m lintel is shown above.

From the main menu, select

Project->Tree

Expand Project then expand Symbols and finally select Create Symbol.

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Symbol Create/Edit/Delete		Enter the Symbol Name . Usually the name includes the size.
Option	Create	
Symbol name	SIP 1200 left 🛃	
Group	Qid 🗨 🔽	
Symbol type	World	Select the Group the symbol is to appear in
Data Input		the symbol drop down menu and select
k 🗢 🖬 🗖 🖉 🖇	2 🔹 🛛 📩 👘	World as the symbol type.
Model	ymbol left 😒	
No embedded colours in symbol		Select the model that contains the manhole
Origin x	0	drawing.
Origin y	0.95 🔫 🛃	Enter the y y location of the menhole con
Factor	L L	tre in your drawing (0 is different then
Length	<u>با</u>	
		Process will create the symbol in the
		project.
choice ok		Change the symbol name , origin y and
Process Write Fin	ish Help	

Write will add the new symbols to the symbols.4d file so that they will be available to other projects.

Leave this panel open as we will need it after we create the mirror image of the pit.

To create the mirror image of the symbol about the x axis use the CAD mirror about X axis command. 12d will require you do this one string at a time. Version 7 does not mirror into a new model so you will want to duplicate the pit symbol model first using **Utilities->A-G->Duplicate.**

🗖 Duplicate	Ty I
Data data to duplicate	
New model Sit symbol mirrol	
Model <pit left="" symbol=""> exists</pit>	Cad Mirror X AXIS
Duplicate Finish Help	

Now repeat the process of creating the right side mirrored symbol. Note that the location of the pit

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

centre is now **negative** and add the suffix **mirrored** to the symbol name.

Do not forget to select Write again to save the symbols to the symbols.4d file.

These symbols can now be used in the **Maintenance hole** tab of the Drainage Plan Plot ppf editor. If your version of 12d supports, **native-size symbol**, in the ppf editor then use this mode. If not, select scalable symbol and enter the size equal to the full width of the symbol (height if it is greater).

COURSE NOTES **STORMWATER DESIGN - Part 2** 16.0 User Defined Attributes

These drainage attributes are automatically created by 12d when required but you are free to change them or add more as desired. The attributes may be exported to a spreadsheet and edited and then imported back into 12d. To edit/add the user defined attributes within 12d select either

Strings=>Properties=>Attributes or

Strings=>User=>Attribute Editor. This second editor is described below.

Top 10 Attribute Editor				
Pick string Pit V II List all attributes in model Auto select list		Prev Next=>		
Attribute Name	Туре	Data		
1 ku 🗸	Text 🔽	not found		
2 approach flow 🔽	Inte 🗸	not found 🔤		
3 sump level 🔽	Real 🔽	26.853618		
4 🛛 pit symbol bearii 🔽	Real 🔽	269.999994		
5 overland profile 🔽	Text 🔽	not found 🚺 🔤		
6 area 🔽	Real 🔽	0.184289		
7 approach flow 🔽	Real 🔽	not found		
8 overflow volume 🔽	Real 🔽	not found		
9 pit name 🔽	Text 🔽	I1 abd		
10 cover rl 🗸 Real 🗸 28.485124 🔤				
Choice ok				
Process Get data Delete All Finish				

First Select **Pick** to select the string that contains the user attributes (the drainage string). The strings will be highlighted in white when they are selected.

All catchment data is store with the pits in drainage strings. To access the pit attributes, select the drop down icon and then select **pit**. A circle will be drawn around the pit selected. **Next** and **Prev** will now move you from pit to pit.

Select the drop down icon and then select `the **Attribute Name** from the list of existing user defined attributes. These attributes include all of the attributes in the model that the string exists in.

They may not be defined for the pit you are editing. **Not found** will be displayed in the **Data** field if the pit does not have that attribute defined.

To change the value for the attribute enter the new value in the **data** field. If the attribute does not exist, deleting the **not found** text and adding data will create it. The message on the right will be displayed whenever you are creating a new attribute.

B Pit Attribute Creator	_ 🗆 ×
Create new attribute	V
Abort	
You are about to create the pit attribute <inspection date=""></inspection>	type Te
<u>Process</u>	

COURSE NOTES STORMWATER DESIGN - Part 2

16.1 Drainage Pit attributes

Pit attributes are created and/or updated when the user selects Set Pit Details.

pit length	real	0	mhsize (first value) from drainage.4d file
pit width	real	0	mhsize (second value) from drainage.4d file
pit group	text		mhgroup from drainage.4d file
cover rl	real	446.68524	8
grate level	real	446.68524	8
setout z	real	446.68524	8
setout x	real	299643.64	8
setout y	real	6563620.7	16
setout distance	real	0	
pit name	text	1-3	
pit type	text	SA2	
pit diameter	real	1.1	
pit chainage	real	118.61441	375
pit centre x	real	299643.64	8
pit centre y	real	6563620.7	16
pit centre fs leve	l real	446.68524	8
pit centre ns leve	elreal	446.68524	8
ds invert	real	445.307	upstream invert level of exit pipe
ds pit	text	1-2	ds pit along the pipe network
sump level	real	445.307	
pit depth	real	1.378	

Extra Atttributes from Pit - Main Tab

cover rl mode	integer	1
design freeboard	real	0.4
direct flow	real	0.02
grate rl mode	integer	1
inlet type	integer	0
ku	real	0.2
ku config	integer	1
ku method	integer	1
kw	real	0.22
sump offset	real	-0.2

Extra Attributes from Pit-Setout Tab

road chainage	real	10
road chainage r	nodeinteger	2
road name	text	My Road
road offset	real	12

COURSE NOTES

STORMWATER DESIGN - Part 2

setout adjustmentreal		-1
setout adjustment zreal		0.045
setout xy mode	integer	0
setout z mode	integer	8

Extra Attributes from Pit-Bypass Tab

bypass pit	text	12.4P
choke major	real	0.8
choke minor	real	0.7
choke pog major	[·] real	0.8
choke pog minor	real	0.7
inlet capacity cur	rvetext	Sutherland - 3% crossfall
manual pit grade	integer	1
manual pit xfall	integer	1
pit grade	real	1
pit xfall	real	3

Extra Attributes from Pit-Notes Tab

reamrks text constructed by others

Setout string selected

-	
design model id uid	52
design string id uid	61
pit symbol angle real	81.48609728
pit symbol bearingreal	8.51390272
pit symbol bearing dmstext	8°30'50"
pit grade real	4.00 if bypass pit present

Centre line string selected (with bypass and setout)

real	3.00	if bypass pit present
uid	52	
uid	92	
integer	1	mirror symbol required for plotting
	real uid uid integer	real3.00uid52uid92integer1

Bypass Pit entered

bypass pit	text	1-2	next pit along bypass string
inlet type	integer	1	
choke major	real	0.8	ongrade or sag choke (see sag setting)
choke minor	real	1	ongrade or sag choke (see sag setting)
inlet capacity cur	rvetext	SA2 3% G	rade

calculate if pit grade and/or pit xfall present

COURSE NOTES STORMWATER DESIGN - Part 2

			(pit type - inlet cap curves determines which are required)	
pit grade	real	4.00	if setout string selected	
pit xfall	real	3.00	if centre line string selected	
The following re	quire the by	pass string	(manual entry of bypass pit is not enough).	
bypass distance	real	33.995	distance to bypass pit	
gutter length	real	99.79	dist. up the bypass string to next pit or end of string (longest bypass route if multiple)	
gutter grade	real	2.70	(us pit fs levels - ds pit fs levels) / gutter length)	
Catchment Tab	data			
area	real	0.1		
percent impervio	ousreal	60		
Pervious Area or	nly			
c major pervious real 0.9		0.9		
c minor pervious	real	0.8		
For both perviou	s and imper	vious (chan	ge pervious to impervious)	
catchment grade perviousreal1				
catchment length perviousreal900				
catchment rough	ness pervior	usreal0.1		
tc major perviou	sreal	5		
tc method pervio	oustext	Kinematic Wave		
tc method pervio	oustext	Direct		
tc minor perviou	sreal	5		

Export Pit Atttributes (calculated when Export selected on Import/Export button))

inlet type	integer	updated to include 5 for headwalls
ds pit string id	uid	drainage string id for the ds pit
ds pit index	integer	index number of the ds pit (counter along the string)
area impervious	real	% impervious * area for set 1
area pervious	real	%pervious * area for set 1
area impervious2	2 real	% impervious * area for set 2
area pervious2	real	% pervious * area for set 2
area impervious3	8 real	% impervious * area for set 3
area pervious3	real	% pervious * area for set 3
pcdrain pit type	type	pit type with the pcdrain suffix (S + pond depth)
Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

Export Pipe Atttributes (calculated when Export selected on Import/Export button))

locked diameter	real	pipe diameter (exists only if pipe locked)
locked invert us	real	pipe us invert (exists only if us invert locked)
locked invert ds	real	pipe ds invert (exists only if ds invert locked)
windes diameter	real	if pipe type is WINDES, value is neg diameter
roughness n	real	if "roughness type" is Manning then roughness value otherwise it is 0
roughness k	real	if "roughness type" is Colebrook then roughness value otherwise it is 0

16.2 Drainage Pipe attributes

Set Pit Details		
invert us	real	28.47
invert ds	real	28.422
diameter	real	0.225
pipe size	text	225
pipe type	text	2
roughness text	text	n=0.010
calculated pipe le	engthreal	9.58175349
calculated pipe g	radereal	0.50095215
calculated pipe g	rade 1 inrea	1199.6198644
calculated us def	lectionreal	71.75414547
calculated ds def	lectionreal	-36.3032794
pipe name	text	12.5P to 12.4P
minimum cover	real	1.04113728
calculated drop	real	0.03

Additional Pipe Attributes created via Pipe Tab setting

design alignment	modeintege	er0
design cover	real	0.4
design cover mod	leinteger	0
design drop	real	0.03
design grade	real	0.1
design size mode	integer	0
diameter	real	0.225
direct pipe flow	real	0.01
lock ds il	integer	1
lock size	integer	1
lock us il	integer	1

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

max height	real	0.6
min height	real	0.3
remarks	text	extra pipe notes
roughness	real	0.012
roughness type	text	Manning
width	real	0.225
width top	real	6

Civil and Surveying Software

COURSE NOTES **STORMWATER DESIGN - Part 2** 17.0 Detailed Drainage Plan Drawing

12d drainage has the capability to create detailed drainage plan drawings with the following features:

- screate symbols at the inlets and the type of symbol is controlled by the inlet type (given when you create the inlet).
- screate text labels for inlet types and user defined pit attributes
- sdraw lines with line styles and colours to represent pipe sizes
- screate text labels for pipe diameters, inverts and user defined pipe attributes
- screate text labels for house connection types, invert levels and chainages
- sindicate direction of flow on pipes.
 - Plan 1 + - \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} Menu d=1 (110) 300 1126.752 1126.813 d=1,10 (1100) d=1,10(1100)

An example is shown below

Usage

This option is accessed from the menu selection

Design => Drainage-Sewer => Plots => Plan Annotations

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2

Drainage Plan Plot PPF Editor	N		
Plot parameter file		Read	Write
Drainage Plan Plot Pipes Pipe diameter labels Pipe IL labels Pipe attribute labels MH name labels MH diameter labels MH depth labels MH depth labels MH attribute labels MH setout points HC name and type labels HC chainage labels HC additional text labels HC additional text labels Flow arrows	Load design details from Model Save plot annotations to Model Clean plot model beforehand Set colours as string names HC addit HC chai HC IL Id HC type Hous	itional text label nage label abel label Flow arrow	t clean
Plot	<u>Find</u> <u>Fin</u>	nish	Helo

The fields and buttons used in this panel have the following functions.

Field DescriptionTypeDefaultsPop-Up

Plot parameter file file box

Optional - no dpf is required. The default settings will create a schematic drainage drawing. A custom dpf may be selected if desired.

Load design details from model box

data source for drainage strings to be labelled

Save plot annotations to model model box

Civil and Surveying Software

COURSE NOTES

STORMWATER DESIGN - Part 2

labels to be created are stored here, Undo will remove the labels created

Clean plot model before hand choice box

smart clean will update text that has been moved and clean the rest. Full clean will all text from the plan annotations model.

Set colour as string name tick box

when selected the string colour will be used for the string name (to be used for DWG/DXF export using map files)

Plot

button

Creates the labels in the model specified

Find

button

used to locate plot parameter input boxes using Version 5 plot parameter names

IMPORTANT! to turn off any data change the text height to zero.

Select Maintenance holes from the tree to set the symbols to be used for the various pit types.

Select the MH type as desired and use **scalable symbol** and **setout point**. For the symbols enter the names that you used when you created the symbols.

Drainage Plan P	lot Pl	PF Editor							
Plot pa	ramete	er file [:B\drainage_	design.drainplanpp			Read			
 Drainage Plan Pl Pipes Maintenance hole representation MH symbol direction mode MH symbol angle (dms) Bubbles Flow arrows Use MH label direction for Text mode 									
	1	MH Type 1 m side entry pit	MH Mode scaleable symbol	Insertion point setout point	MH Symbol or Text 2X1LEFTS	MH Symbol mirror image 2X1RIGHTS	Justificatio	Size	0
~~~~		- 1 -		$\overline{}$	~~~	~~	~~-		

Civil and Surveying Software

## COURSE NOTES STORMWATER DESIGN - Part 2

Drainage Plan Plot PPF Editor				
Plot parameter file 🛛 ::B\drainage_design.drainplanpp 🗀				
🖃 Drainage Plan Plot	MH setout points —		1	
🔁 · Pipes	Draw setout points			
Aintenance holes	Setout symbol	STN 📀		
MH name labels MH diameter labels	Symbol size	0.2		
MH depth labels	Symbol colour	magenta		
MH chainage labels MH attribute labels	Symbol string name	N		
MH setout points ⊕ House connections			6	
- Bubbles Flow arrows			Ů	

Plotting a symbol at the pit setout point is a good confirmation of the data printed in the setout reports. The settings to create this symbol are shown on the left.

Civil and Surveying Software

### COURSE NOTES

### STORMWATER DESIGN - Part 2

## 18.0 Drainage Long Section Plotting - Hatching Under Roads

The drainage long section plotting has been discussed in the Intro Drainage Course. Here we will discuss the technique for hatching under roads and/or footpaths.

The following steps are required.

- 1. Run the Excavation volumes routine using the obvert templates to create sections and strings for a tin on top of the pipe (obvert tin). Select **Stop section at end of manhole** to prevent the pits from being hatched
- 2. Create the obvert tin from the strings and sections then and null by angle length with a small length value so that the tin is nulled near the pits.
- 3. Create a design tin that extends to the limit of the roads.
- 4. Use the hatching section of the drainage long section plot to select the hatching style.

### 18.1 Creating the Obvert strings.

Run the Drainage Plan Plot by selecting Plot from the Drainage Network Editor.



Select the drainage_design ppf file from the library.

Select the folder icon then **Open** the ppf.

Civil and Surveying Software

## COURSE NOTES STORMWATER DESIGN - Part 2

Drainage Plan Plot PPF Editor						
Plot parameter file B\drain	iage_i	design.drainp	lanpp 🚞	Read	Write	
<ul> <li>Drainage Plan Plot</li> <li>Pipes</li> <li>Nipe diameter labels</li> <li>Pipe IL labels</li> <li>Pipe attribute labels</li> </ul>	Pip Pij Pij Dr	pe representa pe string leve pe string vert raw multi-pipe	ition Il mode ical offset es		pipe obverts	
<ul> <li>Maintenance holes</li> <li>House connections</li> <li>Rubles</li> </ul>		Min pipe diam	Max pipe diam	Representation mode	Trim mode	C
Flow arrows		10	333			ri i
Plot	I I	ind		Finish	Help	

Confirm that the **Pipe string level mode** is set to **pipe obverts** and that all symbols with elevations are not used. This include:

- s MH setout points,
- s Flow arrows,
- s pit symbols

Now plot the drawing and we will use the pipe strings at the obvert level to create a tin.

Civil and Surveying Software

#### COURSE NOTES

### STORMWATER DESIGN - Part 2

18.2 Create and Null the Obvert tin

🔲 Triangulate a Data Sou	irce 📃 🗖 🔀
General Data Nulling	
Retriangulate function	dr obvert 🎜
New tin name	rainage obvert 🖾
Tin colour	green
Tin style	1
Model for tin	Sec. 1
Additional settings	
Preserve strings 🗹 Re	move bubbles 🔽
Weed tin	
Cell method	angle data 🚺
Triangulate Finish	Help

To create the obvert tin select.

**Tins->Create->Triangulate Data** 

Enter a **New tin name** as desired.

💻 Triangulate a Data Source 🛛 🔲 📉 🔀
General     Data     Nulling       Data to triangulate       Image: Select pice       Model       Data polygon
Triangulate Finish Help

Select the **Data** tab.

Select the plot model created above.

Triangulate	a Data Source	
General Data	Nulling	
Angle	5°	4
Length	1	<u>ایا</u>
Combined angle	60°	4
Combined length	20	돈
Null polygon		¥
Triangulate	Finish	Help

Select the Nulling tab

Enter a **Length** that is less than the pit diameter and greater than the largest pipe.

Select Triangulate

Civil and Surveying Software

### COURSE NOTES STORMWATER DESIGN - Part 2

The tin will now only exist on top of the pipe and it is ready to use for hatching.

### 18.3 Create a Roads Only Tin

The design tin is already nulled to remove the long triangles. If the footpaths were to be excluded from the tin then they should be removed from the road design strings. You could run a template that did not include the footpath and has a **Final Maximum slope width** of zero or just copy the desired road strings to one model and remove unwanted strings. We will use the later techniques.

Add all of the road string and kerb return models onto one view and then select

### Utilities->A-G->Change

🗖 Change String In	fo 🚬 🗖 🔀	
Data to convert		
New name New colour New style <b>New pt-line type</b> New weight	I I I I I I I I I I I I I I I I I I I	
Target         Image         Image         Image         Image         Finish		

**View** select the view that contains all of the road strings

**Copy to model** type the name of a model for all of the road strings.

Select Change copy the strings.

Civil and Surveying Software

### COURSE NOTES

## STORMWATER DESIGN - Part 2

Change String Info	Dint ID's Polygons Ext	Select the <b>Filter</b> icon at the end of the selection strip. Now select the <b>Model</b> tab and select the <b>Name</b> of the model that holds all of your road and kerb strings <b>road strings only</b> (tab not shown here). Select the <b>String Info</b> tab and enter the name of the strings that you want to remove from the road only model. In this case it is <b>path</b> . Select <b>Filter Select</b> to select these strings.
New name New colour New style New pt-line type New weight Target Target Move to model	leave as is	Select the second <b>Target</b> button <b>Move to model</b> and select the model <b>trash</b> and then select <b>Change</b> . Repeat this for string names <b>int</b> .
Change Finis	(s) h Help	We are now ready to triangulate the road only tin.

Now to create the tin select Tins->Create->Triangulate data

Civil and Surveying Software

### **COURSE NOTES** STORMWATER DESIGN - Part 2

🗖 Triangulate a Data Source 🛛 🗖 🔀	🔲 Triangulate a Data So
General       Data       Nulling         Retriangulate function       road only         New tin name       road only         Tin colour       green         Tin style       1         Model for tin       Image: Color of the settings         Preserve strings       Remove bubbles         Weed tin       Image: Color of the settings         Cell method       Triangle data	General Data Nulling Data to triangulate See See Sec. Model Data polygon
Triangulate Finish Help	Model <road only="" strings=""> e zmin 25.552 zmax 33.975 Triangulate Finish</road>

Enter a function name (optional) and New tin name and then select the Data tab.

🔲 Triangulate a Data So	urce 📃 🗖 🔀					
General Data Nulling						
Angle	5° 🎝					
Length	10					
Combined angle	60° 🎝					
Combined length	20					
Null polygon	₩ ¥					
Model <road only="" strings=""> exists</road>						
zmin 25.552 zmax 33.975						
Triangulate Finish	Help					

💻 Triangulate a Data Source 🛛 🔲 🔀
General     Data     Nulling       Data to triangulate       Image: Second se
Model <road only="" strings=""> exists</road>
zmin 25.552 zmax 33.975
Triangulate Finish Help

Model - Select the model containing the road only strings.

**Length** - Select a length just greater than the width of half the road so that the tin will not be nulled from the end of the roads.

Select Triangulate.

Civil and Surveying Software

COURSE NOTES

### STORMWATER DESIGN - Part 2

### 18.4 Use the Hatching Feature in Drainage Longsections

We are now ready to create the drainage longsection plots. Set up a section view with the a string in the drainage model profiled, the vertical exaggeration set, the desired tins displayed and the service models added. From the main menu select,

### Design->Drainage-Sewer->Plots->Longsections

Drainage Plot PPF Editor					
Plot parameter file \$LIB\drainage.drainppf 🔂 Read Write					
Orainage Plot     ⊡ Title block     ⊡ Plot sheet layout     ⊡ Boxes	View to load details from View Global variables	DES LS			
<ul> <li>Chainages/Uprights</li> <li>Datum area</li> <li>Arrows</li> </ul>	Text style Plot symbols	Arial			
Graph area Top area Corridors Maintenance holes Property controls/House o	Section parameters Network model Horizontal scale Vertical exageration	drainage 1000 10			
⊢ Hacching cut;rill Cut Fill ⊡ Cuts	Sheet size setup Sheet size wd ht (mm)	A1			
Primary string name label	Plotter parameters Plotter type Plot file Clean plot models beforebood	model drainage LS plot			
	Clean plot models bei orenand	jaiways clean			
Plot F	ind <u>Finish</u>	F	telp		

From the **Plot parameter file** field select a drainage longsection ppf from the library and then select **Read.** 

In the **View to load details from** field select the section view you have setup for the drainage long section.

Now select Hatching cut/fill

Civil and Surveying Software

## **COURSE NOTES** STORMWATER DESIGN - Part 2

🗖 Drainage Plot PPF Editor	<b>Define set</b> is set to 1.
Plot parameter file \$LIB\drainage.drainppf 📄 Read Write	<b>Original tin</b> is set to the obvert tin.
Drainage Plot Title block Plot sheet layo Boxes Chainages/Up Chainages/Up Obtatum area Arrows Graph area Top area Corridors Maintenance I Property continion Hatching cut/fill - Tin parameters Use of the set	road only tin.
Plot Find Finish Help	

Now select the + beside the **Hatching cut/fill** and then select **fill**.

Civil and Surveying Software

### COURSE NOTES

### STORMWATER DESIGN - Part 2

Drainage Plot PPF Editor									
Piot parameter file 🏻 🕏	LIB\dra	inage, d	rainppf			Read		Write	
⊡-Drainage Plot	Hate	hing cut	/fill - Fill parar	neters					
由- Title block 由- Plot sheet layout 电- Boxes		Use set #	Fill separation (mm)	Fil hatch angle (dms)	Ell colour	Fil linestyle	Draw sides of fills	Draw original tin	Draw ne tin
⊕ - Chainages/Uprights ⊕ - Datum area ⊕ - Arrows	1	t	5	0	yelow	1	draw sides of fill regions	don't draw sides of original tin in fill	don't dra sides of new tin i fill
Graph area Top area Corridors H-Maintenance holes H-Property controls/House o Hatching out/fil									
- Fill Fill Primary string name label - PPF's to include									
choice ak					_			and the	
Plot			Find		F	nish		Help	

Use set # is entered as 1. Fill separation, hatch angle, colour and linestyle selected as desired. Draw sides of tin, Draw original tin and Draw new tin are not required unless you want these extra line in the drawing.

Select **Plot** and add the plot model **drainage LS plot1** onto a PLAN view to preview the drawing.

Civil and Surveying Software

### COURSE NOTES STORMWATER DESIGN - Part 2



The hatching is shown to the left at a 2mm spacing with the tins and sides not drawn.

Civil and Surveying Software

## COURSE NOTES **STORMWATER DESIGN - Part 2** 19.0 Flooded Width Analysis and HEC RAS

There are 2 flooded width methods in the drainage module. The first can be used with any of the external drainage packages and the second is part of the 12d storm analysis. The first is found on the main menu

Design->Drainage-Sewer->Calc flooded widths

The name of the overland flow string becomes the name of the HECRAS project.

Civil and Surveying Software

COURSE NOTES STORMWATER DESIGN - Part 2